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Abstract

A direct implication of both the industry and academia proclaiming the Age of Tera-

(even the Peta)-scale computing, is that applications havebecome moredata intensivethan ever.

The increased data volume from applications tackling larger and larger problems has fueled the

need for efficient management of this data. In this thesis, weevaluate a technique calledContent

Addressable Storageor CAS, for managing large volumes of data. This evaluation focuses on

the benefits and demerits of using CAS for, i) improved application performance via lockless and

lightweight synchronization of accesses to shared storagedata; ii) improved cache performance;

iii) increase in storage capacity; and, iv) increased network bandwidth. We present the design of

a CAS-based file store that significantly improves the storage performance providing lightweight

and lock-less user-defined consistency semantics. As a result, our file-system shows a 28%

increase in read-bandwidth and a 13% increase in write bandwidth, over a popular file-system

in common use. We use the same experimental file-system to analyze CAS on data from real

world application benchmarks. We also estimate the potential benefits of using CAS for a virtual

machine based user mobility application, that was in activeuse at a public deployment for over

a period of seven months.
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Chapter 1

Introduction

The landscape of computer systems is becoming moredata intensive. Scientists are

faced with mountains of data that stem from four trends, i) the flood of data from new scientific

instruments driven by Moore’s Law, increasing their computational capacity at an alarming rate;

(ii) the flood of data from larger and more complex simulations; (iii) the ability to economically

store huge amounts of data; and (iv) the Internet and Internet driven applications that makes data

accessible to anyone anywhere, allowing the replication, creation, and recreation of more content

[48]. Precedents for petabyte-scale systems already existat data-centers for Google, Yahoo!,

and MSN Search [45]. Such systems have tens of thousands of processing nodes and have

close to 100,000 locally attached disks to deliver the requisite bandwidth. Similar data-centric

behavior exists in applications in other areas — medical imaging, data analysis and mining, video

processing, global climate modeling, computational physics and chemistry. These applications

often manipulate data sets ranging from several megabytes to terabytes [33, 36, 89, 30]. The

computer systems required to support contemporary applications in everyday use in many data-

centers and computing laboratories, are commonly architected as a network of workstations,

commonly known asclusters. Managing the storage and movement of data on such systems,

from storage nodes (nodes housing the requisite data), to the processing nodes, poses substantial

software challenges.
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The major challenges in efficiently managing large amounts of data are at least four-

fold. First, the problem of storing so much data, is only the tip of the iceberg. Second is the

issue of efficiently delivering the data over the network. For large data, this may not be trivial –

data for even a single file could potentially be distributed across the disks at multiple nodes (for

reasons of reliability or parallel access). The third issueis that of handling concurrent accesses

to shared data. Analyses are often performed simultaneously by a collaborating set of nodes

requiring arbitration of accesses to shared data. With the shift to very large, scaled-out cluster

architectures, this is a very critical performance relatedissue thatmustbe dealt with. The fourth

issue, closely related to the third, is that of efficient and smart caching techniques. Data needs to

be re-processed each time a new algorithm is developed, or each time the application is run with

different parameters.This generates even more I/O. If the data must be moved, it makes sense to

store a copy at the destination for later reuse. Thus cachingor re-use of locally available data

is the fourth challenge. To extract maximal performance, data needs to be managed efficiently

along these dimensions. In this thesis, we evaluate a data management technique called Content

Addressable Storage orCASto handle these four challenges.

We observe that for three of the challenges outlined above, namely i) storage efficiency,

ii) network bandwidth and iii) caching efficiency, the use compression-like techniques can yield

benefits. A reduction in the dataset size via data compression techniques, would reduce the space

required to store not just the data itself, but also any replicas, thus increasing the scalability of the

system. The network interconnect that ships the data from a storage node to the compute node

and vice-versa would see a corresponding increase in throughput, owing to the reduced data vol-

ume. Data caches, if used on either the storage node or the compute node, also stand to gain by
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being able to accommodate more data, hence increasing the effectiveness of the cache. Tradi-

tional lossless compression techniques like gzip [145] suffer from at least two problems. First,

due to I/O and memory overheads, the operation is too slow, and second, the operation trans-

forms data from one representation to another, requiring a reverse transform (de-compression)

before any use. On the other hand, specialized compression techniques [140] promise larger

savings, but would require customized code for every application, and hence do not scale to a

system-wide solution.

An alternative technique that has gained significant popularity in recent literature for its

potential to reduce the size of a given dataset is Content Addressable Storage orCAS[80, 93, 94,

37, 130]. CAS operates on data by breaking it into small contiguouschunks, and storing only

the identical chunks in the data, discarding any duplicates. Since the data representation itself is

not modified, no de-compression is required. Since CAS can beapplied on the raw data chunks

itself, other compression techniques like gzip can be applied over and on top of CAS, if desired.

Similar to gzip-like compression, however, the performance of CAS depends on the workload.

A dataset wherein most of the chunks occur just once will not provide much space savings with

CAS. The choice of thechunksizeor the granularity of the data chunks is another significant

factor that affects the performance of CAS. For example, theFarsite file-system [37] indicates a

storage space savings of up to 46% when applying CAS on a file-level granularity, while other

data ([80, 114, 120]) promise much larger savings when applying CAS at a sub-file granularity.

In addition to reducing data volume via compression, CAS canfurther help reduce net-

work traffic in a cluster environment by exploitingcommonalityof data between different files.

When transferring a file between two nodes, CAS recognizes chunks of data the recipient already
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has available locally in other files and avoids sending thosechunks over the network. Such com-

monality could arise out of an older version of the file being present or incidental commonality

between two files. In spite of its growing popularity, details on performance of CAS on real

world data are relatively scant in modern literature. It is the goal of this thesis to evaluate the

pros and cons of using CAS for data emanating from real world applications.

On the other hand, the first and foremost concern of most scientists is performance. One

of the most critical factors affecting performance of applications running in a cluster environ-

ment is that of handling accesses to shared data and while keeping caches up-to-date. The recent

explosion in the scale of clusters, coupled with the emphasis on fault tolerance, has made tradi-

tional locking less suitable for cluster environments. In acluster file system ([15, 109]), arbitra-

tion for shared accesses usually involves a process acquiring a lock from a central lock manager

on a file before proceeding with the write/read operation. Asthe number of processes writing

to the same file increases, performance degrades rapidly from lock contention. On the other

hand, fine-grained file locking schemes, such as byte-range locking, allow multiple processes to

simultaneously write to different regions of a shared file. However, they also restrict scalability

because of the overhead associated with maintaining state for a large number of locks, eventually

leading to performance degradation. Furthermore, any networked locking system introduces a

bottleneck for data access – the lock server.

In this thesis, we make innovative use of CAS to manage concurrent accesses to shared

data. We present the design of a Content Addressable Parallel File System (CAPFS) that makes

use of CAS to providelightweight, optimisticconcurrency in a lockless manner while allowing

for client-side caching of data and meta-data. By avoiding the use of distributed locking, CAPFS
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enhances the scalability and fault-tolerance of the systemwhile optimistic concurrency enhances

file system throughput.

We next describe the assumptions made in this thesis, the background and the terms used

in Chapter 2. Chapter 3 describes the design of CAPFS that makes innovative use of CAS to

enhance application performance. We use the experimental CAPFS platform to evaluate the

benefits and challenges in the use of CAS on data from real world application benchmarks. The

results from this analysis are detailed in Chapter 4. This analysis, however does not completely

capture the essence of a data management tool like CAS. For example, a real person often runs

the same application multiple times, not just once, generating the same data multiple times. To

incorporate such usage behavior in the real world, Chapter 5details a case study that evaluates

CAS on usage data collected over a seven month period for a virtual machine based user mobility

application. We believe that this application is representative of a growing set of applications

[55, 76, 1, 106], all of which would benefit from the use of CAS.Chapter 6 summarizes the

conclusions of this thesis.
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Chapter 2

Background on CAS

Content Addressable Storage orCASis based on the principle of addressing or naming

a data object in such a manner that the name is representativeof its content. Typically this is

accomplished by running a cryptographic hash function on the data, and using the thus generated

hash as the name of the object (theCAS name), as shown in Figure 2.1. In this thesis, we use

the SHA1 cryptographic hash function [87] as the basis for all our discussions and experimental

results. The resulting CAS names (SHA1 hashes) are of fixed-length (20 bytes each).

Such a naming scheme has several advantages over using a human generated name for

a data object. The first and most important advantage from theuse of a cryptographic hash

function is that, a) two identical data objects will have thesame name; and b) barring collisions,

two different data objects will have different CAS names. A second property that results from

the use of this scheme isglobal naming. Addressing a data object by its content-hash provides

a way to globally name a block – independent of the file, serveror any originating domain. By

A
Crypto Hash Function

0xda2c

CAS nameData

Fig. 2.1. CAS based naming
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Fig. 2.2. CAS based storage

removing these constraints on thenamingof the data object, a CAS based data repository has

the ability to compare data objects across filename and othernamespace boundaries.

The above two properties together form the basis for the space savings obtained by the

use of CAS, as described next. CAS operates on a data entity like a file, a raw disk partition or

even a data stream by dividing it into fixed-sizechunks(we discuss variable sized chunks later).

The CAS name for the chunk is then generated. The CAS data repository, which houses the

data chunks, indexed by their CAS names, is then searched forthe presence of the chunk being

processed. If not found, the chunk is added to the repository. But in case the chunk already exists

in the repository, it is not stored a second time, thereby saving storage space that would have been

required for this chunk. This process is shown in Figure 2.2.In this figure, a traditional file store

uses the space required to store six chunks from two files. However, the CAS repository weeds

out the duplicate content, thus storing only three chunks, resulting in a 50% space savings for

the data.

The file recipe: The savings achieved by CAS come at the expense of additionalmeta-

data. For example, in Figure 2.2, to read chunk 1 offile 2 from a CAS repository, one would need
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to figure out the CAS name for chunk 2 (without having access toits contents). To solve this

problem, we maintain an additional table called the filerecipe, that maps a file chunk-number

to its CAS name. In our experiments, we implement the recipe as a flat list of the CAS names

of each chunk of a file, listed in proper sequence. Since the CAS names are of fixed size (20

bytes), it is easy to navigate the recipe. A very important point to note here is that the size of the

meta-data (recipe) depends on thenumber of chunks in the original data, and not on the chunks

in the CAS repository. As we shall see in later chapters, thiscan be a significant performance

drag on CAS.

Savings in network bandwidth: In addition to reducing data volume by detecting re-

dundancy within a file, CAS can further reduce bandwidth requirements by exploiting cross-file

similarities. CAS can take advantage of the fact that the same chunks of data often appear in

multiple files or multiple versions of the same file. For example, to transfer a file between two

nodes, the recipient node determines the chunks of data it already has other files and avoids

transfer of these chunks over the network. If the recipient node is the CAS repository, then such

cross-filecommonalityis detected by simply querying the CAS repository. If the recipient is a

compute node, then the node can query it’s local content addressable cache which could contain

data from other files, or simply an older, out of date version of the same file.
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Commonality : CAS based savings are achieved by exploiting data commonality within

a single file or across different files. The presence or absence of commonality is highly dependent

on the data being stored. Commonality in a dataset might be incidental (e.g. across unrelated

files) or due to relationships in the data (e.g. storing a newer version of the same file in a CAS

repository). The commonality of a chunk refers to the numberof times it occurs in the original

non-CAS data. The commonality of a dataset also depends on the chunksize, or the granularity

at which the data is broken up for application of CAS.

Chunksize : The exploitable commonality in a dataset also depends on thechunksize.

For example, on reducing the chunksize to one-fourth it’s original value in Figure 2.3, CAS

can detect more commonality in the data leading to greater savings. The downside to using a

chunksize that is four times smaller, is that the meta-data overhead (recipe) size goes up four

times, irrespective of how much commonality exists in the data. For datasets with not too much

commonality, use of a smaller chunksize with larger recipesmay outweigh any savings obtained

by the use of CAS.

Chunksize : fixed or variable ? Uptil now, the discussion has assumed that CAS is

applied on data that is partitioned into fixed sized chunks. For some workloads, this may not be

the best data chunking policy to use. For example, consider auser editing a text document over

multiple sessions. Such a workload will have insertion and deletion of data in the middle of the

file, but the content mostly stays the same across versions. As a result of the insert and delete

operations, the chunk boundaries of the new version may not align perfectly with the same chunk

boundaries in the previous version. Hence, when the data forthe latest version must be uploaded

to the server (CAS repository), the fixed sized chunking scheme may not detect that most of the

content already lies on the CAS repository.
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The use of avariable sizedchunking scheme can avoid the sensitivity to shifting file off-

sets. LBFS [80] uses Rabin fingerprints (hashes) to determine chunk boundaries in a file [96].

When the low-order 13 bits of the fingerprint equal a particular constant value, the bytes pro-

ducing that fingerprint constitute the end of a chunk. Since this scheme bases chunk boundaries

on file contents (i.e. the particular byte that causes the specific pre-determined fingerprint), in-

sertions and deletions only affect the surrounding chunks.As a result only a few chunks will

change, thus saving network bandwidth where a fixed-sized chunking scheme would have failed.

Note that the variable sized chunking mechanism has a highercost - chunk boundaries

need to be calculated in addition to running a SHA1 like function on the chunks themselves. The

benefits of a variable sized chunking scheme occurs in workloads with a significant number of

insert and delete operations. Additionally, such ‘inserts’ and ‘deletes’ may not be visible if CAS

is applied at a disk-block level. Owing to file-system fragmentation and non-contiguous file

allocation, the contents of a single file may be spread all over the disk. Hence the insert/delete

operations may translate to new writes at free disk blocks placed between data blocks of any

arbitrary file. In this thesis, neither of these conditions hold. Our analysis of CAS on the CAPFS

platform in Chapters 3 and 4 evaluate applications that havewell co-ordinated over-writes in the

middle of the file and appends at the end-of-file, with no insert/delete operations in the middle

of the file. The analysis of real-world data in Chapter 5 has been undertaken at the disk-block

level. Hence the simpler fixed-size chunking mechanism has been used for all our experiments.

Another argument favoring fixed chunks is that with variablesized chunks, the recipe file is

larger and parsing it is a more complex (expensive) operation.

Use of cryptographic hashes :On running a cryptographic hash function, a digest or a

hash is produced. This hash is used as the CAS name of the data.A key property of cryptographic
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Fig. 2.4. SHA-1 hash collision probability using Birthday Paradox

hash functions like SHA1 that is exploited here is that the hash functionh is collision resistant,

i.e. it must be computationally intractable to find a tuple(a,b) such that h(a) = h(b). Of course,

sucha andb must exist, given the infinite domain and finite range ofh, but finding such a pair

should be very hard. Functions like SHA1, RIPEMD, MD5 are designed to withstand differential

cryptanalysis, i.e. they will map correlated inputs to uncorrelated outputs. In the absence of an

adversary, a collision will occur due to just plain bad luck.We estimate using the ‘birthday

paradox’ that the probability of an an undetectable TCP bit-flip [118] is greater than that of a

SHA-1 hash collision, for a CAS repository housing less than4.5 × 260 chunks. At a small

chunksize of 128 bytes, this implies that we need to worry more about undetectable network

transmission errors as long as the CAS store houses less than576 petabytes of data. Figure 2.4

indicates the probability of a SHA-1 collision (estimated using the birthday paradox) in terms of

the number of chunks being stored in the CAS repository.

In case of an adversary being present, one would theoretically need to perform260 op-

erations. Recently however, Wang et. al. [136] havebrokenSHA-1, by reporting that this can
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be achieved in260 operations. However, such an attack is still infeasible dueto the immense

computational power required. For example, Grembowski et.al. [50] indicate that even using

specialized state-of-the-art hardware running at 33 Mhz would take millions of years to find a

single collision. A 4 Ghz imaginary hardware could accomplish this in about 170,000 years. It

has hence, been argued that CAS based techniques based on SHA-1 are still safe [10]. Details

of properties of cryptographic hash functions can be found in [102] or briefly in [10]. We as-

sume for this thesis that SHA-1 is sufficiently safe to use or if not, then we advocate the use of a

stronger digest like SHA-256. Further discussion of this topic is unfortunately beyond the scope

of this thesis.
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Chapter 3

CAPFS : Design of a Content Addressable Parallel File System

3.1 Introduction

High-bandwidth I/O continues to play a critical role in the performance of numerous

scientific applications that manipulate large data sets. Parallelism in disks and servers provides

cost-effective solutions at the hardware level for enhancing I/O bandwidth. However, several

components in the system software stack, particularly in the file system layer, fail to meet the

demands of applications. This is primarily due to tradeoffsthat parallel file system designers

need to make between performance and scalability goals at one end, and transparency and ease-

of-use goals at the other.

Compared to network file systems (such as NFS [104], AFS [53],and Coda [61]), which

despite allowing multiple file servers still allocate all portions of a file to a server, parallel file

systems (such as PVFS [25], GPFS [110], and Lustre [15]) distribute portions of a file across

different servers. With the files typically being quite large and different processes of the same

application sharing a file, such striping can amplify the overall bandwidth. With multiple clients

reading and writing a file, coordination between the activities becomes essential to enforce a

consistent view of the file system state.

The level of sharing when viewed at a file granularity in parallel computing environ-

ments is much higher than that observed in network file systems [8, 88], making consistency

more important. Enforcement of such consistency can, however, conflict with performance and
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scalability goals. Contemporary parallel file system design lacks a consensus on which path

to take. For instance, PVFS provides high-bandwidth accessto I/O servers without enforcing

overlapping-write atomicity, leaving it entirely to the applications or run-time libraries (such as

MPI-I/O [41]) to handle such consistency requirements. On the other hand, GPFS and Lustre

enforce byte-range POSIX [115] consistency. Locking is used to enforce serialization, which

in turn may reduce performance and scalability (more scalable strategies are used in GPFS for

fine-grained sharing, but the architecture is fundamentally based on distributed locking).

Serialization is not an evil but a necessity for certain applications. Instead of avoiding

consistency issues and using an external mechanism (e.g., DLM [54]) to deal with serialization

when required, incorporating consistency enforcement in the design might reduce the overheads.

Hence the skill lies in being able to make an informed decision regarding the consistency needs

of an application. A key insight here is that applications, not the system, know best to deal with

their concurrency needs. In fact, partial attempts at such optimizations already exist — many

parallel applications partition the data space to minimizeread-write and write-write sharing.

Since different applications can have different sharing behavior, designing for performanceand

consistency would force the design to cater toall their needs — simultaneously! Provisioning

a single (and strict) consistency mechanism may not only make such fine-grained customization

hard but may also constrain the suitability of running diverse sets of applications on the same

parallel file system.

Addressing some of these deficiencies, this chapter presents the design and implementa-

tion of a novel parallel file system called CAPFS that provides the following notable features:

• To the best of our knowledge, CAPFS is the first file system to provide a tunable consistency

framework that can be customized for an application. A set ofplug-in libraries is provided
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with clearly defined entry points, to implement different consistency models, including POSIX,

Session, and Immutable-files. Though a user could build a model for each application, we

envision a set of predefined libraries that an application can pick before execution for each file

and/or file system.

• The data store in CAPFS is content-addressable. Consequently, blocks are not modified in

place, allowing more concurrency in certain situations. Inaddition, content addressability can

makewrite propagation(which is needed to enforce coherence) more efficient. For instance,

update-based coherence mechanisms are usually avoided because of the large volume of data

that needs to be sent. In our system however, we allow update messages that are just a sequence

of (cryptographic) hashes of the new content being generated. Further, content addressability

can exploit commonality of content within and across files, thereby lowering caching and net-

work bandwidth requirements.

• Rather than locking when enforcing serialization for read-write sharing or write-write sharing

( ⁀write atomicity), CAPFS uses optimistic concurrency control mechanisms [68, 79] with the

presumption that these are rare events. Avoidance of distributed locking enhances the scalabil-

ity and fault-tolerance of the system.

The rest of this chapter is organized as follows. The next section outlines the design

issues guiding our system architecture, following which the system architecture and the oper-

ational details of our system are presented in Section 3.3. An experimental evaluation of our

system is presented in Section 3.4 on a concurrent read/write workload and on a parallel tiled

visualization code and for the BTIO benchmark. Section 3.5 summarizes related work and Sec-

tion 3.6 concludes with contributions and discusses directions for further improvements.
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3.2 Design Issues

The guiding rails of the CAPFS design is based on the following goals: 1) user should be

able to define the consistency policy at a chosen granularity, and 2) implementation of consis-

tency policies should be as lightweight and concurrent as possible. The CAPFS design explores

these directions simultaneously — providing easily expressible, tunable, robust, lightweight and

scalable consistency without losing focus of the primary goal of providing high bandwidth.

3.2.1 Tunable Consistency

If performance is a criterion, consistency requirements for applications might be best

decided by applications themselves. Forcing an application that has little or no sharing to use

a strong or strict consistency model may lead to unnecessarily reduced I/O performance. Tra-

ditional techniques to provide strong file system consistency guarantees for both meta-data and

data use variants of locking techniques. In this chapter, weprovide tunable semantic guarantees

for file data alone.

The choice of a system wide consistency policy may not be easy. NFS [104] offers

poorly defined consistency guarantees that are not suitablefor parallel workloads. On the other

hand, Sprite [85] requires the central server to keep track of all concurrent sessions and disable

caching at clients when write-sharing is detected. Such an approach forcesall write-traffic to

be network bound from thereon until one or more processes close the shared file. Although

such a policy enforces correctness, it penalizes performance of applications when writers update

spatially disjoint portions of the same file which is quite common in parallel workloads. For

example, an application may choose to have a few temporary files (store locally, no consistency),
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Fig. 3.1. Design of the CAPFS parallel file system

a few files that it knows no one else will be using (no consistency), a few files that will be

extensively shared (strong consistency), and a few files that might have sharing in the rare case

(weaker user-defined consistency). A single consistency policy for a cluster-based file system

cannot cater to the performance of different workloads suchas those described above.

As shown in Figure 3.1, CAPFS provides a client-side plug-inarchitecture to enable

users to define their own consistency policies. The users write plug-ins that define what actions

should be taken before and after the client-side daemon services the corresponding system call.

(The details of the above mechanism are deferred to Section 3.3.6).

The choice of a plug-in architecture to implement this functionality has several benefits.

Using this architecture, a user can define not just standard consistency policies like POSIX, ses-

sion and NFS, but also custom policies, at a chosen granularity (sub-file, file, partition-wide).
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First and foremost, the client keeps track of its files; servers do not need to manage copy-sets

unless explicitly requested by client. Furthermore, a client can be using several different con-

sistency policies for different files or even changing the consistency policy for a given fileat

run-time, without having to recompile or restart the file system or even the client-side daemon

(Figure 3.1). All that is needed is that a desired policy be compiled as a plug-in and be installed

in a special directory, after which the daemon is sent a signal to indicate the availability of a

new policy. Leaving the choice of the consistency policyandallowing the user to change it at

run-time enable tuning performance at a very fine granularity. However, one major underlying

assumption in our system design is that we anticipate that the file system administrator sets the

same policy on all the nodes of the cluster that accesses the file system. Handling conflicting

consistency policies for the same file system or files could lead to incorrect execution of appli-

cations.

3.2.2 Lightweight Synchronization

Any distributed file system needs to provide a consistency protocol to arbitrate accesses

to data and meta-data blocks. The consistency protocol needs to expose primitives both for

atomic read/modify/write operations and for notification of updates to regions that are being

managed. The former primitive is necessary to ensure that the state of the system is consistent

in the presence of multiple updates, while the latter is necessary to incorporate client caching

and prevent stale data from being read. Traditional approaches use locking to address both these

issues.
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3.2.2.1 To Lock or Not to Lock?

Some parallel cluster file systems (such as Lustre [15] and GPFS [110]) enforce data

consistency by using file locks to prevent simultaneous file access from multiple clients. In a

networked file system, this strategy usually involves acquiring a lock from a central lock manager

on a file before proceeding with the write/read operation. Such a coarse-grained file locks-

based approach ensures that only one process at a time can write data to a file. As the number

of processes writing to the same file increases, performance(from lock contention) degrades

rapidly. On the other hand, fine-grained file-locking schemes, such as byte-range locking, allow

multiple processes to simultaneously write to different regions of a shared file. However, they

also restrict scalability because of the overhead associated with maintaining state for a large

number of locks, eventually leading to performance degradation. Furthermore, any networked

locking system introduces a bottleneck for data access: thelock server.

The recent explosion in the scale of clusters, coupled with the emphasis on fault toler-

ance, has made traditional locking less suitable. GPFS [110], for instance, uses a variant of a

distributed lock manager algorithm that essentially runs at two levels: one at a central server and

the other on every client node. For efficiency reasons, clients can cache lock tokens on their files

until they are explicitly revoked.

Such optimizations usually have hidden costs. For example,in order to handle situations

where clients terminate while holding locks, complex lock recovery/release mechanisms are

used. Typically, these involve some combination of a distributed crash recovery algorithm or a

lease system [49]. Timeouts guarantee that lost locks can bereclaimed within a bounded time.

Any lease-based system that wishes to guarantee a sequentially consistent execution must handle
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a race condition, where clients must finish their operation after acquiring the lock before the lease

terminates. Additionally, the choice of the lease timeout is a tradeoff between performance and

reliability concerns and further exacerbates the problem of reliably implementing such a system.

The pitfalls of using locks to solve the consistency problems in parallel file systems

motivated us to investigate different approaches to providing the same functionality. We use

a lockless approach for providing atomic file system data accesses. The approach to providing

lockless, sequentially consistent data in the presence of concurrent conflicting accesses presented

here has roots in three other transactional systems: store conditional operations in modern micro-

processors [75], optimistic concurrency algorithms in databases [68], and optimistic concurrency

approach in the Amoeba distributed file service [79].

Herlihy [52] proposed a methodology for constructing lock-free and wait-free imple-

mentations for highly concurrent objects using the load-linked and store-conditional instructions.

Our lockless approach, similar in spirit, does not imply theabsence of any synchronization prim-

itives (such as barriers) but, rather, implies theabsence of a distributed byte-range file locking

service. By taking an optimistic approach to consistency, we hope togain on concurrency and

scalability, while pinning our bets on the fact that conflicting updates (write-sharing) will be

rare [8, 31, 88]. In general, it is well understood that optimistic concurrency control works best

when updates are small or when the probability of simultaneous updates to the same item is

small [79]. Consequently, we expect our approach to be idealfor parallel scientific applications.

Parallel applications are likely to have each process writeto distinct regions in a single shared

file. For these types of applications, there is no need for locking, and we would like for all writes

to proceed in parallel without the delay introduced by such an approach.
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3.2.2.2 Invalidates or Updates?

Given that client-side caching is a proven technique with apparent benefits for a dis-

tributed file system, a natural question that arises in the context of parallel file systems is whether

the cost of keeping the caches coherent outweighs the benefits of caching. However, as outlined

earlier, we believe that deciding to use caches and whether to keep them coherent should be

the prerogative of the consistency policy and should not be imposed by the system. Thus, only

those applications that require strict policies and cache coherence are penalized, instead of the

whole file system. A natural consequence of opting to cache isthe mechanism used to syn-

chronize stale caches; that is, should consistency mechanisms for keeping caches coherent be

based on expensive update-based protocols or on cheaper invalidation-based protocols or hybrid

protocols?

Although update-based protocols reduce lookup latencies,they are not considered a suit-

able choice for workloads that exhibit a high degree of read-write sharing [6]. Furthermore,

an update-based protocol is inefficient in its use of networkbandwidth for keeping file system

caches coherent, thus leading to a common adoption of invalidation-based protocols.

As stated before, parallel workloads do not exhibit much block-level sharing [31] . Even

when sharing does occur, the number of consumers that actually read the modified data blocks

is typically low. In Figure 3.2 we compute the number of consumers that read a block between

two successive writes to the same block (we assume a block size of 4 KB). Upon normalizing

against the number of times sharing occurs, we get the valuesplotted in Figure 3.2. This figure

was computed from the traces of four parallel applications that were obtained from [132]. In

other words, Figure 3.2 attempts to convey the amount of read-write sharing exhibited by typical
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Fig. 3.2. Read-write sharing for parallel applications.

parallel applications. It indicates that the number of consumers of a newly written block is

very small (with the exception of LU, where a newly written block is read by all the remaining

processes before the next write to the same block). Thus, an update-based protocol may be

viable as long as the update mechanism does not consume too much network bandwidth. This

result motivated us to consider content-addressable cryptographic hashes (such as SHA-1 [87])

for maintaining consistency because they allow for a bandwidth-efficient update-based protocol

by transferring just the hash in place of the actual data. We defer the description of the actual

mechanism to Section 3.3.5.

3.2.2.3 Content Addressability

Content addressability provides an elegant way to summarize the contents of a file. It

provides the following advantages:



www.manaraa.com

23

• The contents of a file can be listed as a concatenation of the hashes of its blocks. Such a

representation was referred to asrecipesin a previous study [127]. This approach provides

a lightweight method of updating or invalidating sections of a file and so forth.

• It increases system concurrency, by not requiring synchronization at the content-addressable

data servers (Figure 3.1). In comparison to versioning file systems that require a cen-

tral version/time-stamp servers [79] or a distributed protocol for obtaining unique times-

tamps [46], a content-addressable system provides an independent, autonomous technique

for clients to generate new version numbers for a block. Since newly written blocks will

have new cryptographic checksums (assuming no hash collisions), a content-addressable

data server also achieves the “no-overwrite” property thatis essential for guaranteeing any

sort of consistency.

• Using cryptographic hashes also allows for a bandwidth-efficient update-based protocol

for maintaining cache coherence. This forms the basis for adopting a content-addressable

storage server design in place of a traditional versioning mechanism. Additionally, it

is foreseeable that the content-addressable nature of datamay lead to easy replication

schemes.

• Depending on the workload, content addressability might beable to reduce network traffic

and storage demands. Blocks with the same content, if in the cache (because of common-

ality of data across files or within a file) do not need to be fetched or written. Only a single

instance of the common block needs to be stored, leading to space savings.

As shown in Figure 3.1, the client employs two caches for performance. The H-Cache,

or hash cache, stores all or a portion of a file’srecipe[127]. A file in the CAPFS file system is
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composed of content-addressable chunks. Thus, a chunk is the unit of computation of crypto-

graphic hashes and is also the smallest unit of accessibility from the CAS servers. The chunk

size is crucial because it can impact the performance of the applications. Choosing a very small

value of chunk size increases the CPU computation costs on the clients and the overheads asso-

ciated with maintaining a large recipe file, while a very large value of chunk size may increase

the chances of false sharing and hence coherence traffic. Thus, we leave this as a tunable knob

that can be set by the plug-ins at the time of creation of a file and is a part of the file’s meta-data.

For our experiments, unless otherwise mentioned, we chose adefault chunk size of 16 KB. The

recipe holds the mapping between the chunk number and the hash value of the chunk holding

that data. Using the H-Cache provides a lightweight method of providing updates when sharing

occurs. An update to the hashes of a file ensures that the next request for that chunk will fetch

the new content.

The D-Cache, or the data cache, is a content addressable cache. The basic object stored

in the D-Cache is a chunk of data addressed by its SHA1-hash value. One can think of a D-cache

as being a local replica of the CAS server’s data store. When asection of a file is requested by

the client, the corresponding data chunks are brought into the D-Cache. Alternatively, when the

client creates new content, it is also cached locally in the D-Cache. The D-Cache serves as a

simple cache withno consistency requirements. Since the H-caches are kept coherent (whenever

the policy dictates), there is no need to keep the D-caches coherent. Additionally, given a suitable

workload, it could also exploit commonality across data chunks and possibly across temporal

runs of the same benchmark/application, thus potentially reducing latency and network traffic.
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3.2.3 Background & Definitions

We now define a few terms that would help provide a background for the later discus-

sions.

• A file sessionis a series of file system calls that a process executes beginning with the

opening of a file and ending with theclose of the file. All file system calls (read,

write,truncate etc) between theopen andclose for a particular file are designated

to be a part of the file’s session.

• Concurrent write-sharing [85]occurs when 2 or more file sessions accesses the same file

in conflicting modes, where at-least one of them opens the filefor writing.

• Any concurrent execution of a set of actions is said to beserializableif it is equivalent

to any serial execution of the same set of actions. Each action is therefore the granularity

at which serializability is guaranteed also known as the serializable unit. Typically, most

file system implementations define this unit to be a single filesystem call/operation, while

relational databases offer it at the granularity of a transaction.

• The question of how accurately an execution reflects the actual serialization order was ad-

dressed in [111]. An execution isreal-time consistentif for any two conflicting operations

op1andop2, op1precedesop2 in execution if and only ifop1occurred in real time before

op2 [111]. An example of a non real-time consistent serialized execution is as follows, if

a stale copy of a file that was last updated by a process P1, is cached by a process P2, then

although P2 accesses the file later in real time than P1, P2 is serialized before P1 since it

does not see P1’s update.
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One of the important issues that needs to be addressed when designing a file system is

its behavior in the presence of concurrent conflicting requests which is commonly referred to as

the file system semantics issue. There are four commonly usedtypes of file semantics namely,

• POSIX/UNIX semanticsuses the basic file system calls as the units of serializability as

mentioned briefly previously. UNIX semantics requires thatthese operations also be real-

time consistent, i.e every write operation’s updates should be immediately visible to all

read operations that follow. Although, guaranteeing such strict semantics does not inhibit

performance for disk-based file systems, this can greatly impact the performance and ef-

ficiency of parallel/network file systems due to the associated overheads in making sure

that updates get propagated or appropriate invalidate messages are sent to every copy of

the file in the entire cluster and in applying the updates in the same order. These semantics

are essentially identical to thesequential consistencysemantics that was formalized by

Lamport in [69] in the context of multi-processor architectures. Sprite [85] is an example

of a file system that implements UNIX semantics.

• Session Semanticsrequires that the beginning of a file session reflects the updates from

the previously closed file session. It does not guarantee that updates from concurrently

open sessions will be visible to the newly opened session. Consequently, all read/write

operations for any newly opened file session is performed locally on the cached copy. At

the end of a file session, the cached copy from the current file session is made visible to

subsequent sessions. The implications of such semantics isthat updates from concurrently

executing sessions could potentially be completely lost. In some sense, a session serves as

synchronization points at which consistency of is guaranteed that is similar to the Release
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Consistency model [44] for multi-processor architectures. AFS [53] is an example of a

file system that implements Session Semantics.

• Immutable Files: In order to overcome the disadvantages stated above that are associated

with session semantics, immutable file semantics proposed that the end of an update ses-

sion would create a new version of the file and thus any old version of the file would still

be retained and be accessible. In many ways this is similar toversioning file systems(like

[113, 105]) with the only difference being the granularity at which the file system creates

new versions, i.e., the former (immutable files) creates newversions at the end of an up-

date session, whereas the latter (versioning file systems) creates new versions based on a

user-specified granularity (which could potentially be after every update).

• Transactional Semanticsrequires that file sessions be serializable, or in other words the

serializable unit is guaranteed to be a session. Thus, any execution of a file session would

be appear to be an atomic action. Each file session could thus be compared to a transaction

in a database system.

Traditionally, most distributed file systems allow clientsto cache data, which in turn

introduces a potential level of file inconsistency. In the past, researchers have attempted to solve

this problem by, placing the burden on servers to call-back and inform the caches of updates, or

disallow client caching during specific periods of times, orby placing the burden on clients to

check the validity of their cached copies before allowing access. Information about the changed

state of the file system is disseminated by sending appropriate invalidation messages to the client

caches. Unlike in distributed shared memory systems, update-based protocols are not typically
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(a) PVFS (b) CAPFS

Fig. 3.3. System architectures: CAPFS design incorporates two client-side caches that are absent in
PVFS.

used due to the excessive amount of data that would have to be sent on the network, and the need

to ensure that updates are seen in the same order by all clients.

3.3 System Architecture

The goal of our system is to provide a robust parallel file system with good concurrency,

high throughput and tunable consistency. The design of CAPFS resembles that of PVFS [25] in

many aspects — central meta-data server, multiple data servers, RAID-0-style striping of data

across the I/O servers, and so forth . The RAID-0 striping scheme also enables a client to easily

calculate which data server has which data blocks of a file. Inthis section, we first take a quick

look at the PVFS architecture and its limitations from the perspective of consistency semantics

and then detail our system’s design. Figure 3.3 depicts a simplified diagram of the PVFS and

CAPFS system architectures.
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3.3.1 PVFS Architecture

The primary goal of PVFS as a parallel file system is to providehigh-speed access to file

data for parallel applications. PVFS is designed as a client-server system, as shown in Figure 3.3

(a).

PVFS uses two server components, both of which run as user-level daemons on one or

more nodes of the cluster. One of these is a meta-data server (called MGR) to which requests for

meta-data management (access rights, directories, file attributes, and physical distribution of file

data) are sent. In addition, there are several instances of adata server daemon (called IOD), one

on each node of the cluster whose disk is being used to store data as part of the PVFS name space.

There are well-defined protocol structures for exchanging information between the clients and

the servers. For instance, when a client wishes to open a file,it communicates with the MGR

daemon, which provides it the necessary meta-data information (such as the location of IOD

servers for this file, or stripe information) to do subsequent operations on the file. Subsequent

reads and writes to this file do not interact with the MGR daemon and are handled directly by

the IOD servers.

This strategy is key to achieving scalable performance under concurrent read and write

requests from many clients and has been adopted by more recent parallel file system efforts.

However, a flip-side to this strategy is that the file system does not guarantee any data con-

sistency semantics in the face of conflicting operations or sessions. Fundamental problems that

need to be addressed to offer sequential/ POSIX [115] style semantics are thewrite atomicityand

write propagationrequirements. Since file data is striped across different nodes and since the
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data is always overwritten, the I/O servers cannot guarantee write atomicity, and hence reads is-

sued by clients could contain mixed data that is disallowed by POSIX semantics. Therefore, any

application that requires sequential semantics must rely on external tools or higher-level locking

solutions to enforce access restrictions. For instance, any application that relies on UNIX/POSIX

semantics needs to use a distributed cluster-wide lock manager such as the DLM [54] infras-

tructure, so that allread/write accesses acquire the appropriate file/byte-range locks before

proceeding.

3.3.2 CAPFS: Servers

The underlying foundation for our system is the content-addressable storage model,

wherein file blocks areaddressed and locatedbased on the cryptographic hashes of their con-

tents. A file is logically split into fixed-size data chunks, and the hashes for these chunks are

stored in thehash server daemon. The hash server daemon, analogous to the meta-data server

(MGR) daemon of the PVFS system design, is responsible for mapping and storing the hashes

of file blocks (termed recipes [127]) for all files. In essence, this daemon translates the logical

block-based addressing mode to the content addressable scheme, that is, given a logical block

i of a particular fileF, the daemon returns the hashes for that particular block. Even though in

the current implementation there is a central server, work is under way to use multiple meta-data

servers to serve a file’s hashes for load-balancing purposes. Throughout the rest of this chapter,

we will use the term MGR server synonymously with hash serveror meta-data server to refer to

this daemon.
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Analogous to the PVFS I/O server daemon is a content-addressable server (CAS) dae-

mon, which supports a simpleget/putinterface to retrieve/store data blocks based on their cryp-

tographic hashes. However, this differs significantly bothin terms of functionality and exposed

interfaces from the I/O servers of PVFS. Throughout the restof this chapter, we will use the term

CAS server synonymously with data server to refer to this daemon.

3.3.3 CAPFS: Clients

The design of the VFS glue in CAPFS is akin to the upcall/downcall mechanism that was

initially prototyped in the Coda [61] file system (and later adapted in many other file systems

including PVFS). In this design, file system requests obtained from the VFS are queued in a

device file and serviced by a user-level daemon. If an error isgenerated or if the operation

completes successfully, the response is queued back into the device file, and the kernel signals

the process that was waiting for completion of the operation. The client-side code intercepts

these upcalls and funnels meta-data operations to the meta-data server. The data operations are

striped to the appropriate CAS servers. Prototype implementations of the VFS glue are available

at [133] for both Linux 2.4 and 2.6 kernels.

3.3.4 System Calls

The CAPFS system uses optimistic concurrency mechanisms tohandle write atomicity

on a central meta-data server, while striping writes in parallel over multiple content-addressable

servers (CAS servers). The system has a lockless design: theonly form of locking used is

mutual-exclusion locks on the meta-data server to serialize the multiple threads (whenever nec-

essary), as opposed to distributed locking schemes (such asDLM [54]).
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3.3.4.1 Steps for theopen and close System Call

• When a client wishes to open a file, a request is sent to the hash-server to query the hashes

for the file if any.

• The server returns the list of hashes for the file (if the file issmall). Hashes can also be

obtained on demand from the server subsequently. The serveralso adds H-cache callbacks

to this node for this file if requested.

• After the hashes are obtained, the client caches them locally (if specified by the policy) in

the H-cache to minimize server load. H-cache coherence is achieved by having the server

keep track of when commits are successful, and issuing callbacks to clients that may have

cached the hashes. This step is described in greater detail in the subsequent discussions.

• On the last close of the file, all the entries in the H-cache forthis file are invalidated for

subsequent opens to reacquire, and if necessary the server is notified to terminate any

callbacks for this node.

3.3.4.2 Steps for theread System Call

• The client tries to obtain the appropriate hashes for the relevant blocks either from the

H-cache or from the hash server. An implicit agreement here is that the server promises

to keep the client’s H-cache coherent. This goal may be achieved by using either an

update-based mechanism or an invalidation-based mechanism depending on the number

of sharers. Note that the update callbacks contain merely the hashes and not the actual

data.
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• Using these hashes, it tries to locate the blocks in the D-cache. Note that keeping the

H-cache coherent is enough to guarantee sequential consistency; nothing needs to be done

for the D-cache because it is content addressable.

• If the D-cache has the requested blocks, the read returns andthe process continues. On

a miss, the client issues aget request to the appropriate CAS servers, which is cached

subsequently. Consequently, reads in our system do not suffer any slowdowns and should

be able to exploit the available bandwidth to the CAS serversby accessing data in parallel.

3.3.4.3 Steps for thewrite System Call

Writes from clients need to be handled a little differently because consistency guarantees

may have to be met (depending on the policy). Since writes change the contents of the block,

the cryptographic hashes for the block changes, and hence this is a new block in the system

altogether. We emphasize that we need mechanisms to ensure write atomicity not only across

blocks but also across copies that may be cached on the different nodes. On a write to a block,

the client does the following sequence of steps,

• Hashes for all the relevant blocks are obtained either from the H-cache or from the hash

server.

• If the write spans an entire block, then the new hash can be computed locally by the client.

Otherwise, it must read the block and compute the new hash based on the block’s locally

modified contents.

• After the old and new hashes for all relevant blocks are fetched or computed, the client

does anoptimistic putof the new blocks to the CAS servers, which store the new blocks.
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Note that by virtue of using content-addressable storage, the servers do not overwrite older

blocks. This is an example of an optimistic update, because we assume that the majority

of writes will be race-free and uncontested.

• If the policy requires that the writer’s updates be made immediately visible, the next step

is thecommitoperation. Depending on the policy, the client informs the server whether

the commit should be forced or whether it can fail. Upon a successful commit, the return

values are propagated back.

• A failed commit raises the possibility oforphanedblocks that have been stored in the I/O

servers but are not part of any file. Consequently, we need a distributed cleaner process

that is invoked when necessary to remove blocks that do not belong to any file. We refer

readers to [133] for a detailed description of the cleaner protocol.

3.3.4.4 Commit Step

• In the commit step, the client contacts the hash server with the list of blocks that have been

updated, the set of old hashes, and the set of new hashes. In the next section, we illustrate

the need for sending the old hashes, but in short they are usedfor detecting concurrent

write-sharing scenarios similar to store-conditional operations [75].

• The meta-data server atomically compares the set of old hashes that it maintains with the

set of old hashes provided by the client. In the uncontested case, all these hashes would

match, and hence the commit is deemed race free and successful. The hash server can

now update its recipe list with the new hashes. In the rare case of a concurrent conflicting

updates, the server detects a mismatch in the old hashes reported for one or more of the
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client’s commits and asks them to retry the entire operation. However, clients can override

this by requesting the server to force the commit despite conflicts.

• Although such a mechanism has guaranteed write-atomicity across blocks, we still need to

provide mechanisms to ensure that client’s caches are also updated or invalidated to guar-

antee write atomicity across all copies of blocks that may berequired by the consistency

policy (sequential consistency/UNIX semantics require this). Since the server keeps track

of clients that may have cached file hashes, a successful commit also entails updating or

invalidating any client’s H-cache with the latest hashes.

• Our system guarantees that updates to all locations are madevisible in the same order to

all clients (this mechanism is not exposed to the policies yet). Therefore, care must be

exercised in the previous step to ensure that updates to all clients’ H-caches are atomic. In

other words, if multiple clients may have cached the hashes for a particular chunk and if

the hash-server decides to update the hashes for the same chunk, the update-based protocol

must use a two-phase commit protocol (such as those used in relational databases), so that

all clients see the updates in the same order. This is not needed in an invalidation-based

protocol however. Hence, we use an invalidation-based protocol in the cases of multiple

readers/writers and an update-based protocol for single reader/writer scenarios.

3.3.5 Conflict Resolution

Figure 3.4 depicts a possible sequence of actions and messages that are exchanged in the

case of multiple-readers and a single-writer client to the same file. We do not show the steps

involved in opening the file and caching the hashes. In step 1,the writer optimistically writes
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Fig. 3.4. Action sequence: multiple-readers single-writer
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to the CAS servers after computing the hashes locally. Step 2is the request for committing the

write sent to the hash server. Step 3 is an example of the invalidation-based protocol that is used

in the multiple reader scenario from the point of view of correctness as well as performance.

Our system resorts to an update-based protocol in the singlesharer case. Sequential consistency

requires that any update-based protocol has to be two-phased for ensuring the write-ordering

requirements, and hence we opted to dynamically switch to using invalidation-based protocol in

this scenario to alleviate performance concerns. Steps 5 and 6 depict the case where the readers

look up the hashes and the local cache. Since the hashes couldbe invalidated by the writer, this

step may also incur an additional network transaction to fetch the latest hashes for the appropriate

blocks. After the hashes are fetched, the reader looks up itslocal data cache or sends requests

to the appropriate data servers to fetch the data blocks. Steps 5 and 6 are shown in dotted lines

to indicate the possibility that a network transaction may not be necessary if the requested hash

and data are cached locally (which happens if both theread’s occurred before thewrite in

the total ordering).

Figure 3.5 depicts a possible sequence of actions and messages that are exchanged in the

case of multiple-readers and multiple-writers to the same file. As before, we do not show the

steps involved in opening the file and caching the hashes. In step 1, writer client II optimistically

writes to the CAS servers after computing hashes locally. Instep 2, writer client I does the same

after computing hashes locally. Both these writers have at least one overlapping byte in the file

to which they are writing (true-sharing) or are updating different portions of the same chunk

(false-sharing). In other words this is an instance of concurrent-write sharing. Since neither

writer is aware of the other’s updates, one of them is asked toretry. The hash server acts as a

serializing agent. Since it processes requests from clientII before client I, the write from client
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Fig. 3.5. Action sequence: multiple-readers multiple-writers
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II is successfully committed, and step 3 shows the invalidation messages sent to the reader and

the writer client. Step 4 is the acknowledgment for the successful write commit. Step 5 is shown

dashed to indicate that the hash server requests writer client I to retry its operation. The write

done by this client in step 2 is shown dotted to indicate that this created orphaned blocks on the

data server and needs to be cleaned. After receiving a reply from the hash server that the write

needs to be retried, the writer client I obtains the latest hashes or data blocks to recompute its

hashes and reissues the write as shown in step 6.

In summary, our system provides mechanisms to achieve serializability that can be used

by the consistency policies if they desire. In our system,read-write serializabilityand write

atomicity across copiesare achieved by having the server update or invalidate the client’s H-

cache when a write successfully commits.Write-write serializability across blocksis achieved

by having the clients send in the older hash values at the timeof the commit to detect concurrent

write-sharing and having one or more of the writers to restart or redo the entire operation.

We emphasize here that, sinceclient state is mostly eliminated, there is no need for a

complicated recovery process or lease-based timeouts thatare an inherent part of distributed

locking-based approaches. Thus, our proposed scheme is inherently more robust and fault toler-

ant from this perspective when H-caches are disabled. If H-caches are enabled however, tempo-

rary failures such as network disconnects can cause clientsto read/write stale data. Further, the

centralized meta-data server with no built-in support for replication is still a deterrent from the

point of view of fault-tolerance and availability. We hope to address both these issues as future

extensions.
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struct plugin_policy_ops {
handle (*pre_open)(force_commit, use_hcache,

hcache_coherence, delay_commit, num_hashes);
int (*post_open)(void *handle);
int (*pre_close)(void *handle);
int (*post_close)(void *handle);
int (*pre_read)(void *handle, size, offset);
int (*post_read)(void *handle, size, offset);
int (*pre_write)(void *handle, size, offset,

int *delay_wc);
int (*post_write)(void *handle, sha1_hashes *old,

sha_hashes *new);
int (*pre_sync)(const char *);
int (*post_sync)(void *handle);
};

int hcache_get(void *handle, begin_chunk, nchunks,
void *buf);

int hcache_put(void *handle, begin_chunk, nchunks,
const void *buf);

int hcache_clear(void *handle);
int hcache_clear_range(void *handle, begin_chunk,

nchunks);
void hcache_invalidate(void);

int dcache_get(char *hash, void *buf, size);
int dcache_put(char *hash, const void *buf, size);
int commit(void *handle, sha1_hashes *old_hashes,

sha1_hashes *new_hashes,
sha1_hashes *current_hashes);

Client-Side Plug-in API CAPFS Client-Daemon: Core API

Fig. 3.6. The client-side plug-in API and the CAPFS client-daemon core API. On receiving a system call, the CAPFS client-daemon calls
the corresponding user-defined pre- and post- functions, respectively, before servicing the system call.
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3.3.6 Client-side Plug-in Architecture

The CAPFS design incorporates a client-side plug-in architecture that allows users to

specify their own consistency policy to fine tune their application’s performance. Figure 3.6

shows the hooks exported by the client-side and what callbacks a plug-in can register with the

client-side daemon. Each plug-in is also associated with a ”unique” name and identifier. The

plug-in policy’s name is used as a command-line option to themount utility to indicate the

desired consistency policy. The CAPFS client-side daemon loads default values based on the

command-line specified policy name at mount time. The user isfree to define any of the call-

backs in the plug-ins (setting the remainder to NULL), and hence choosing the best trade-off

between throughput and consistency for the application. The plug-in API/callbacks to be de-

fined by the user provide a flexible and extensible way of defining a large range of (possibly

non-standard) consistency policies. Additionally, otheroptimizations such as pre-fetching of

data or hashes, delayed commits, periodic commits(e.g., commit after “t” units of time, or com-

mit after every “n” requests), and others can be accommodated by the set of callbacks shown in

Figure 3.6). For standard cases, we envision that the callbacks be used as follows.

Setting Parameters at Open:On mounting the CAPFS file system, the client-side dae-

mon loads default values forforce commit,use hcache,hcache coherence,delay commit,

andnum hashes parameters. However, these values can be overridden on a per-file basis as

well by providing a non-NULLpre open callback. Section 3.3.4.4 indicates that in a commit

operation, a client tells the server what it thinks the old hashes for the data are and then asks

the server to replace them with new, locally calculated hashes. Hence a commit operation fails

if the old hashes supplied by the client do not match the ones currently on the server (because
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of intervening commits by other clients). On setting theforce commit parameter, the client

forces the server into accepting the locally computed hashes, overwriting whatever hashes the

server currently has. Theuse hcache parameter indicates whether the policy desires to use

the H-Cache. Thehcache coherence parameter is a flag that indicates to the server the

need for maintaining a coherent H-cache on all the clients that may have stale entries. The

delay commit indicates whether the commits due to writes should be delayed (buffered) at

the client. Thenum hashes parameter specifies how many hashes to fetch from the meta-data

server at a time. These parameters can be changed by the user by defining apre open callback

in the plug-in (Figure 3.6). This function returns a handle,which is cached by the client and is

used as an identifier for the file. This handle is passed back tothe user plug-in inpost open

and other subsequent callbacks until the last reference to the file is closed. For instance, a plug-

in implementing an AFS session like semantics [53] would fetch all hashes at the time of open,

delay the commits till the time of aclose, set theforce commit flag and commit all the

hashes of a file at the end of the session.

Prefetching and Caching: Prior to a read, the client daemon invokes thepre read

callback (if registered). We envision that the user might desire to check H-Cache and D-Cache

and fill them using the appropriate hcacheget/dcacheget API (Figure 3.6) exported by the client

daemon. This callback might also be used to implement prefetching data, hashes, and the like.

Delayed commits: A user might overload thepre write callback routine to imple-

ment delayed commits over specific byte ranges. One possibleway of doing this is to have the

pre write callback routine set a timer (in case a policy wishes to commit every “t” units of

time) that would invoke thepost write on expiration. But for the moment,pre write re-

turns a value fordelay wc (Figure 3.6) to indicate to the core daemon that the write commits
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need to be delayed or committed immediately. Hence, on getting triggered, thepost write

checks for pending commits and then initiates them by calling the appropriate core daemon API

(commit). Thepost write could also handle operations such as flushing or clearing the

caches.

Summary: The callbacks provide enough flexibility to let the user choose when and how

to implement most known optimizations (delayed writes, prefetching, caching, etc.) in addition

to specifying any customized consistency policies. By passing in the offsets and sizes of the

operations to the callback functions such aspre read, pre write, plug-in writers can also

use more specialized policies at a very fine granularity (such as optimizations making use of

MPI derived data-types [41]). This description details just one possible way of doing things.

Users can use the API in a way that suits their workload, or fall back on standard predefined

policies. Note that guaranteeing correctness of executionis the prerogative of the plug-in writer.

Implementation of a few standard policies (Sequential, SESSION-like, NFS-like) and others

(Table 3.8 in Section 3.4) indicate that this step does not place an undue burden on the user. The

above plug-ins were implemented in less than 150 lines of C code.

One must also note, that in this scenario all clients are co-operative and mount the same

file-system with same parameters. In case the same file or file-system is mounted (or opened)

with different parameters at different clients, results ofany ensuing operations could be unpre-

dictable.

3.4 Experimental Results

Our experimental evaluation of CAPFS was carried out on an IBM pSeries cluster. with

the following configuration. There are 20 compute nodes eachof which is a dual hyper-threaded
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Fig. 3.7. Myrinet (a) Point-to-point latency inµsec (b) Bisection bandwidth in MB/s

Xeon clocked at 2.8 GHz, equipped with 1.5 GB of RAM, a 36 GB SCSI disk and a 32-bit

Myrinet card (LANai9.0 clocked at 134 MHz). The nodes run Redhat 9.0 with Linux 2.4.20-8

kernel compiled for SMP use and GM 1.6.5 used to drive the Myrinet cards. Our I/O configu-

ration includes 16 CAS servers with one server doubling as both a meta-data server and a CAS

server. All newly created files are striped with a stripe sizeof 16 KB and use the entire set of

servers to store the file data. A modified version of MPICH 1.2.6 distributed by Myricom for

GM was used in our experimental evaluations.

3.4.1 Network Performance

We first evaluate the network performance of the clusters, byusing thempptestprogram

supplied by the MPICH distribution. This test evaluates thepoint-to-point message latencies and

bisection bandwidth for varying message sizes and the results are shown in Figures 3.7 (a) and

(b). The bisection bandwidth serves as a useful yardstick tocompare the aggregate bandwidths
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that our system achieves (the bisection bandwidth was computed over the same 16 node subset

that house the CAS servers). We find that our cluster’s bisection bandwidth peaks around 630

MB/s for a message size of 1 MB, and the point-to-point latencies for a message size of 4 KB

is around 90 microseconds. The command line used for measuring the bisection bandwidth is

shown below,

mpirun -np <np> -machinefile <machinefilename> \

./examples/perftest/mpptest -bisect -logscale

3.4.2 Aggregate Bandwidth Tests

Since the primary focus of parallel file systems is aggregatethroughput, our first work-

load is a parallel MPI program(pvfs test.cfrom the PVFS distribution), that determines the ag-

gregate read/write bandwidths and verifies correctness of the run. The block sizes, iteration

counts, and number of clients are varied in different runs. Consequently, this workload demon-

strates concurrent-write sharing and sequential-write sharing patterns, albeit not simultaneously.

Times for the read/write operations on each node are recorded over ten iterations and the maxi-

mum averaged time over all the tasks is used to compute the bandwidth achieved. The graphs for

the above workload plot the aggregate bandwidth (in MB/s) onthe y-axis against the total data

transferred to or from the file system (measured in MB). The total data transferred is the product

of the number of clients, block size and the number of iterations.

We compare the performance of CAPFS against a representative parallel file system –

PVFS (Version 1.6.4). To evaluate the flexibility and fine-grained performance tuning made
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possible by CAPFS’ plug-in infrastructure, we divide our experimental evaluation of into cate-

gories summarized in Table 3.8. Five simple plug-ins have been implemented to demonstrate the

performance spectrum.

The values of the parameters in Table 3.8 — (force commit, hcachecoherenceandusehcache)

dictate the consistency policies of the file system. Theforce commitparameter indicates to the

meta-data server that the commit operation needs to be carried out without checking for conflicts

and being asked to retry. Consequently, this parameter influences write performance. Likewise,

thehcachecoherenceparameter indicates to the meta-data server that a commit operation needs

to be carried out in strict accordance with the H-cache coherence protocol. Since the commit

operation is not deemed complete until the H-cache coherence protocol finishes, any consis-

tency policy that relaxes this requirement is also going to show performance improvements for

writes. Note that neither of these two parameters is expected to have any significant effect on

the read performance of this workload. On the other hand, using the H-cache on the client-side

(usehcacheparameter) has the potential to improving the read performance because the number

of RPC calls required to reach the data is effectively halved.

Policy Use Force Hcache
Name Hcache Commit Coherence
SEQ-1 0 0 X
SEQ-2 1 0 1
FOR-1 0 1 X
FOR-2 1 1 1
REL-1 1 1 0

Fig. 3.8. Design space constituting a sample set of consistency policies: SEQ-1, SEQ-2 implement se-
quential consistency; FOR-1, FOR-2 implement a slightly relaxed mechanism where commits are forced;
REL-1 implements an even more relaxed mechanism. The X in rows 1 and 3 denotes a don’t care for the
variable’s value.
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The first two rows of Table 3.8 illustrate two possible ways ofimplementing a sequen-

tially consistent file system. The first approach denoted as SEQ-1, does not use the H-cache (and

therefore H-caches need not be kept coherent) and does not force commits. The second approach

denoted as SEQ-2, uses the H-cache, does not force commits, and requires that H-caches be kept

coherent. Both approaches implement a sequentially consistent file system image and are ex-

pected to have different performance ramifications depending on the workload and the degree of

sharing.

The third and fourth rows of Table 3.8 illustrate a slightly relaxed consistency policy

where the commits are forced by clients instead of retrying on conflicts. The approach denoted

as FOR-1, does not use the H-cache (no coherence required). The approach denoted as FOR-2,

uses the H-cache and requires that they be kept coherent. Onecan envisage that such policies

could be used in mixed-mode-environments where files are possibly accessed or modified by

non-overlapping MPI jobs as well as unrelated processes.

The fifth row of Table 3.8 illustrates an even more relaxed consistency policy denoted as

REL-1, that forces commits, uses the H-cache, and does not require that the H-caches be kept

coherent. Such a policy is expected to be used in environments where files are assumed to be non-

shared among unrelated process or MPI-based applications or in scenarios where consistency

is not desired. Note that it is the prerogative of the application-writer or plug-in developers

to determine whether the usage of a consistency policy wouldviolate the correctness of the

application’s execution.

Read Bandwidth: In the case of the aggregate read bandwidth results (Figures3.9(a)

and 3.9(b)), the policies using the H-cache (SEQ-2, FOR-2, REL-1) start to perform better in

comparison to both PVFS and policies not using the H-cache (SEQ-1, FOR-1). This tipping
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Fig. 3.9. Aggregate Bandwidth in MB/s with varying block sizes: CAPFSvs. PVFS for (a) read-8-
clients, (b) read-16-clients, (c) write-8-clients, (d) write-16-clients.
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point occurs when the amount of data being transferred is fairly large (around 3 GB). This is

intuitively correct, because the larger the file, the greater the number of hashes that need to be

obtained from the meta-data server. This requirement imposes a higher load on the server and

leads to degraded performance for the uncached case. The sharp drop in the read bandwidth for

the H-cache based policies (beyond 4 GB) is an implementation artifact caused by capping the

maximum number of hashes that can be stored for a particular file in the H-cache.

On the other hand, reading a small file requires proportionately fewer hashes to be re-

trieved from the server, as well as fewer RPC call invocations to retrieve the entire set of hashes.

In this scenario, the overhead of indexing and retrieving hashes from the H-cache is greater than

the time it takes to fetch all the hashes from the server in oneshot. This is responsible for the

poor performance of the H-cache based policies for smaller file sizes. In fact, a consistency

policy that utilizes the H-cache allows us to achieve a peak aggregate read bandwidth of about

450 MB/s with 16 clients. This is almost a 55% increase in peakaggregate read bandwidth in

comparison to PVFS which achieves a peak aggregate read bandwidth of about 290 MB/s. For

smaller numbers of clients, even the policies that do not make use of the H-cache perform better

than PVFS.

In summary, for medium to large file transfers, from an aggregate read bandwidth per-

spective, consistency policies using the H-cache (SEQ-2, FOR-2, REL-1) outperform both PVFS

and consistency policies that do not use the H-cache (SEQ-1,FOR-1).

Write Bandwidth: As explained in Section 3.3.3, write bandwidths on our system are

expected to be lower than read bandwidths and these can be readily corroborated from Fig-

ures 3.9(c) and 3.9(d). We also see that PVFS performs betterthan all of our consistency poli-

cies for smaller data transfers (upto around 2 GB). At aroundthe 1.5–2 GB size range, PVFS
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experiences a sharp drop in the write bandwidth because the data starts to be written out to disk

on the I/O servers that are equipped with 1.5 GB physical memory. On the other hand no such

drop is seen for CAPFS. The benchmark writes data initialized to a repeated sequence of known

patterns. We surmise that CAPFS exploits this commonality in the data blocks, causing the

content-addressable CAS servers to utilize the available physical memory more efficiently with

fewer writes to the disk itself.

At larger values of data transfers (greater than 2 GB), the relaxed consistency policies

that use the H-cache (REL-1, FOR-2) outperform both PVFS andthe other consistency policies

(SEQ-1, SEQ-2, FOR-1). This result is to be expected, because the relaxed consistency seman-

tics avoid the expenses associated with having to retry commits on a conflict and the H-cache

coherence protocol. Note that the REL-1 scheme outperformsthe FOR-2 scheme as well, since

it does not perform even the H-cache coherence protocol. Using the REL-1 scheme, we obtain a

peak write bandwidth of about 320 MB/s with 16 clients, whichis about a 12% increase in peak

aggregate write bandwidth in comparison to that of PVFS, which achieves a peak aggregate write

bandwidth of about 280 MB/s.

These experiments confirm that performance is directly influenced by the choice of con-

sistency policies. Choosing an overly strict consistency policy such as SEQ-1 for a workload

that does not require sequential consistency impairs the possible performance benefits. For ex-

ample, the write bandwidth obtained with SEQ-1 decreased byas much as 50% in comparison

to REL-1. We also notice that read bandwidth can be improved by incorporating a client-side

H-cache. For example, the read bandwidth obtained with SEQ-2 (FOR-2) increased by as much

as 80% in comparison to SEQ-1 (FOR-1). However, this does notcome for free, because the

policy may require that the H-caches be kept coherent. Therefore, using a client-side H-cache
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may have a detrimental effect on the write bandwidth. All of these performance ramifications

have to be carefully addressed by the application designersand plug-in writers before selecting

a consistency policy.

We now turn our attention to the performance of two well-structured, parallel scientific

applications on our file system to measure the performance impact of consistency policies. The

first application is a tiled visualization code obtained from [95] that simulates the I/O access

patterns of parallel visualization tools. and the second application is the NAS BTIO [7] (Version

2.4) benchmark from NASA Ames Research Center. that simulates the I/O access patterns of a

time-stepping flow solver that periodically dumps its solution matrix.

3.4.3 Tiled I/O Benchmark

Tiled visualization codes are used to study the effectiveness of today’s commodity-based

graphics systems in creating parallel and distributed visualization tools. In this experiment,

we use a version of the tiled visualization code [95] that uses multiple compute nodes, where

each compute node takes high-resolution display frames andreads only the visualization data

necessary for its own display.

We use nine compute nodes for our testing, which mimics the display size of the visu-

alization application. The nine compute nodes are arrangedin the 3 x 3 display as shown in

Figure 3.10, each with a resolution of 1024 x 768 pixels with 24-bit color. In order to hide the

merging of display edges, there is a 270-pixel horizontal overlap and a 128-pixel vertical over-

lap. Each frame has a file size of about 118 MB, and our experiment is set up to manipulate a set

of 5 frames, for a total of about 600 MB.
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Fig. 3.10. Tile reader file access pattern: Each processor reads data from a display file onto
local display (also known as a tile).

This application can be set up to run both in collective I/O mode [41], wherein all the

tasks of the application perform I/O collectively, and in non-collective I/O mode. Collective

I/O refers to an MPI I/O optimization technique that enableseach processor to do I/O on behalf

of other processors if doing so improves the overall performance. The premise upon which

collective I/O is based is that it is better to make large requests to the file system and cheaper to

exchange data over the network than to transfer it over the I/O buses. Once again, we compare

CAPFS against PVFS for the policies described earlier in Table 3.8. All of our results are the

average of five runs. A sample command line is,

mpirun -np 9 -machinefile emp ./mpi-tile-io-gm --nr_tiles_x 3

--nr_tiles_y 3 --sz_tile_x 1024 --sz_tile_y 768 --sz_element 24

--overlap_x 270 --overlap_y 128 --filename foo
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Fig. 3.11. Tile I/O benchmark bandwidth in MB/s: (a) non-collective read, (b) non-collective write, (c)
collective read, (d) collective write.
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Read Bandwidth: The aggregate read bandwidth plots (Figures 3.11(a) and 3.11(c)),

indicate that CAPFS outperforms PVFS for both the non-collective and the collective I/O sce-

narios, across all the consistency policies. Note that the read phase of this application can benefit

only if the policies use the H-caches (if available). As we saw in our previous bandwidth ex-

periments, benefits of using the H-cache start to show up onlyfor larger file sizes. Therefore,

read bandwidths for policies that use the H-cache are not significantly different from those that

don’t in this application. Using our system, we achieve a maximum aggregate read bandwidth

of about 90 MB/s without collective I/O and about 120 MB/s with collective I/O. These results

translate to a performance improvement of 28% over PVFS readbandwidth for the noncollective

scenario and 20% over PVFS read bandwidth for the collectivescenario.

Write Bandwidth: The aggregate write bandwidths paint a different picture. For non-

collective I/O, Figure 3.11 (b), the write bandwidth is verylow for two of our policies (SEQ-2,

FOR-2). The reason is that both these policies use an H-cacheand also require that the H-

caches be kept coherent. Also, the non-collective I/O version of this program makes a number

of small write requests. Consequently, the number of H-cache coherence messages (invalidates)

also increases, which in turn increases the time it takes forthe writes to commit at the server.

One must also bear in mind that commits to a file are serializedby the meta-data server and

could end up penalizing other writers that are trying to write simultaneously to the same file.

Note that the REL-1 policy does not lose out on write performance despite using the H-cache,

since commits to the file do not execute the expensive H-cachecoherence protocol. In summary,

this result indicates that if a parallel workload performs alot of small updates to a shared file,

then any consistency policy that requires H-caches to be kept coherent is not appropriate from a

performance perspective.
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Figure 3.11(d) plots the write bandwidth for the collectiveI/O scenario. As stated earlier,

since the collective I/O optimization makes large, well-structured requests to the file system,

all the consistency policies (including the ones that require coherent H-caches) show a marked

improvement in write bandwidth. Using our system, we achieve a maximum aggregate write

bandwidth of about 35 MB/s without collective I/O and about 120 MB/s with collective I/O.

These results translate to a performance improvement of about 6% over PVFS write bandwidth

for the non-collective scenario and about 13% improvement over PVFS write bandwidth for the

collective scenario.

3.4.4 NAS BTIO Benchmark

The BTIO benchmark (Version 2.4) [7] from NASA Ames ResearchCenter simulates

the I/O required by a time-stepping flow solver that periodically writes its solution matrix. The

solution matrix is distributed among processes by using a multi-partition distribution in which

each process is responsible for several disjoint sub-blocks of points (cells) of the grid. The

solution matrix is stored on each process as C three-dimensional arrays, where C is the number

of cells on each process (the arrays are actually four dimensional, but the first dimension has

only five elements and is not distributed). Data is stored in the file in an order corresponding to

a column-major ordering of the global solution matrix.

The access pattern in BTIO is non-contiguous in memory and infile and is therefore diffi-

cult to handle efficiently with the UNIX/POSIX I/O interface. Therefore, we used the “full MPI-

IO” version of this benchmark, which uses MPI derived data-types to describe non-contiguity

in memory and file and also uses a single collective I/O function to perform the entire I/O. We

ran the Class A problem size, which uses a 64x64x64 element array with a total size of 400 MB
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and tests were run using 4, 9, and 16 compute nodes (the benchmark requires that the number of

compute nodes be a perfect square).
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Fig. 3.12. Execution time for the NAS BTIO benchmark.

Figure 3.12 shows the wall-clock time for execution of this benchmark for the different

file system configurations and number of compute nodes. We notice that as the number of clients

increases, the overall execution time decreases for both the file systems. Further, we also see that

all our consistency policies perform almost as well as PVFS with minimal overheads. With REL-

1 which is the most relaxed policy in our system, the execution time of the application is about

10% slower than that of PVFS for 16 processors, and with SEQ-1which is the most strict policy

in our system, the execution time of the application is about20% slower than that of PVFS for

16 processors. For this workload, the performance benefits with using a relaxed policy (such as
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REL-1) over a stringent policy (such as SEQ-1) is higher for asmaller number of clients than for

a larger number of clients indicating that this workload canbenefit with an even more relaxed

policy (such as a delayed commit policy) for a larger number of clients.

3.5 Related Work

Many efforts have sought to solve the consistency problem inthe context of distributed

file systems. Fundamentally, any approach to providing a consistency needs to address two

issues: write atomicity/serialization (ensuring that writes appear atomic and are seen in the same

order by all clients, especially in a system with multiple copies of data and across blocks that

may span nodes) and write propagation issues (ensure that writes are visible to other processes).

Therefore, we discuss past efforts to solve this problem based on these two categories.

Distributed file systems such as AFS [53], NFS [104] and Sprite [8, 85] have only a single

server that doubles in functionality as a meta-data and dataserver. Because of the centralized

nature of the servers, write atomicity is fairly easy to implement. Client-side caches still need

to be kept consistent however, and it is with respect to this issue (write propagation) that these

approaches differ from the CAPFS architecture. The Sprite distributed file system [85] uses

a stateful server approach that keeps track of concurrentlyopen sessions of every file in the

system. Sessions that have opened the file in read mode are informed by means of a callback

from the server that their caches are stale in case the file hasbeen written to by some other

client. If the server detects that there are concurrent write sessions, then it informs the relevant

clients to write-through, effectively disabling the cachefor the entire period of the operation. The

venerable Network File System [104] implements a mostly stateless server, and hence the onus

is on the client to periodically ensure that state of their cache is correct. AFS [53] implements
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write-on-closesemantics (a variant of the session semantics discussed earlier), where the server

keeps track of clients caching a file, and when the files are closed the changes are written back

to the server, which then notifies any other clients that may have cached the file. Coda [61], a

descendant of AFS also uses callbacks which is basically a guarantee provided by the servers

that clients would be notified when their cached copies are nolonger valid. Coda differs from

AFS in that it allows for server replication, that allows volumes to have read-write replicas at

more than one server which is referred to as the volume storage group. Since, there are multiple

servers, the write atomicity problem is solved by having modifications propagated in parallel to

all available volume storage groups, and eventually to those that missed the updates. However,

with the exception of Sprite, none of the other file systems offer a sequentially consistent file

system image for the sake of performance and due to the different domains of deployment.

Since the beginning of distributed computing, there have been many efforts to build dis-

tributed file-servers all of which support mechanisms for concurrency control. Many of the ear-

liest distributed file servers use variants of locks for concurrency control such as XDFS [119],

Felix [42] and Alpine [20], while some such as SWALLOW [123, 97] use timestamps. Paral-

lel file systems such as GPFS [110] and Lustre [15] employ distributed locking to synchronize

parallel read-write disk accesses from multiple client nodes to its shared disks. The locking

protocols are designed to allow maximum throughput, parallelism, and scalability, while simul-

taneously guaranteeing that file system consistency is maintained. Every file system operation

acquires an appropriate read/write lock to synchronize with conflicting operations. In addition to

a centralized lock manager, each node in the cluster also runs a local lock manager. The global,

centralized lock manager coordinates locks between local lock managers by handing out tokens,

which can be revoked at a later point on a conflicting access. Although such algorithms can
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be highly tuned and efficient, failures of clients can significantly complicate the recovery pro-

cess. Hence any locking-based consistency protocol needs additional distributed crash recovery

algorithms or lease-based timeout mechanisms to guaranteecorrectness. Frangipani [125] and

Petal [70] together implement a distributed storage system. Frangipani is a distributed file sys-

tem built to operate on top of a distributed virtual disk interface provided by the Petal system.

Analogous to GPFS, coherence in Frangipani for data and meta-data is maintained with the help

of a distributed lock server that provides multiple-reader/single-writer locks to clients on the

network, and uses leases [49] to handle with client failures. Likewise, the Global File System

(GFS) [91, 92] (a shared-disk, cluster file system) also usesfine-grained SCSI locking com-

mands, lock-caching and callbacks for performance and synchronization of accesses to shared

disk blocks, and leases, journalling [92] for handling nodefailures and replays. The CAPFS file

system eliminates much of the client state from the entire process, and hence client failures do

not need any special handling.

Providing a plug-in architecture for allowing the user todefinetheir own consistency

policies for a parallel file system is a contribution unique to CAPFS file system. Tunable con-

sistency models and tradeoffs with availability have been studied in the context of replicated

services by Yu et al. [142, 143]. Swarm [122] provides the user with a choice of consistency

policies for a wide-area object store.

Sprite-LFS [103] proposed a new technique for disk management, where all modifica-

tions to a file system are recorded sequentially in a log, which speeds crash recovery and writes.

An important property in such a file system is that no disk block is ever overwritten (except

after a disk block is reclaimed by the cleaner). Content-addressability helps the CAPFS file

system gain this property, wherein updates from a process donot overwrite any existing disk or
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file system blocks. Recently, content-addressable storageparadigms have started to evolve that

are based on distributed hash tables like Chord [116]. A key property of such a storage sys-

tem is that blocks are addressed by the cryptographic hashesof their contents, like SHA-1 [87].

Tolia et al. [127] propose a distributed file system CASPER that utilizes such a storage layer

to opportunistically fetch blocks in low-bandwidth scenarios. Usage of cryptographic content

hashes to represent files in file systems has been explored previously in the context of Single

Instance Storage [11], Farsite [2], and many others. Similar to log-structured file systems, these

storage systems share a similar no-overwrite property because every write of a file/disk block

has a different cryptographic hash (assuming no collisions). CAPFS uses content-addressability

in the hope of minimizing network traffic by exploiting commonality between data block, and

to reduce synchronization overheads, by using hashes for cheap update based synchronization.

The no-overwrite property that comes for free with content addressability has been exploited to

provide extra concurrency at the data servers.

In the context of multi-processor systems, Herlihy proposed Lock-free and wait-free syn-

chronization algorithms [52] that makes use of the load-linked and store-conditional instruc-

tions [58, 75, 112] provided by the micro-processor that effectively bounds the number of steps

before which an operation to a shared region will complete. In the context of databases, opti-

mistic concurrency algorithms [3, 126] have been proposed that focuses on delaying the locking

of shared regions to achieve better scalability. An implication of the above property in the opti-

mistic model is that transactions could fail and hence wouldneed to be retried, while traditional

pessimistic models obtain locks prior to updates and hence would always succeed. The proposed

system makes use of a similar property by detecting conflicting operations and retrying them.
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3.6 Chapter Summary

In this chapter, we have presented the design and implementation of a robust, high-

performance parallel file system that offers user-defined consistency at a user-defined granu-

larity using a client-side plug-in architecture. To the best of our knowledge CAPFS is the

only file system that offers tunable consistency that is alsouser-defined and user-selectable at

run-time. Rather than resorting to locking for enforcing serialization for read-write sharing or

write-write sharing, CAPFS uses an optimistic concurrencycontrol mechanism. Unlike previous

network/parallel file system designs that impose a consistency policy on the users, our approach

provides the mechanisms and defers the policy to application developers and plug-in writers.

We now look into more traditional uses of CAS – for saving storage space and network

bandwidth. We next present a study of data collected from execution of real world application

benchmarks, to analyze the pros and cons of using CAS.
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Chapter 4

Content Addressable Storage : Pros and Cons

4.1 Introduction

Content Addressable Storage or CAS has been an increasinglypopular tool in recent

systems literature, often used as a silver bullet to manage large datasets by reducing their storage

and network bandwidth requirements [12, 4, 93, 134, 83]. Theabove savings are achieved by

eliminating duplicate instances of datachunks(blocks). Applications that manage large datasets

are potential beneficiaries. We illustrate our case with twoexamples.

First, imagine a data-center where multiple virtual machines are hosted on the same

server [1, 55, 76]. On powering up, each virtual machine firstfetches its own virtual disk from

which it boots its own guest operating system. Presumably, asignificant number of the virtual

disks have the same operating system. The storage backend that houses all the virtual disks could

use CAS to exploit thecommonalitybetween the virtual disks, thereby over-committing the

storage resource, similar to the way virtual machines oftenover-commit memory. The compute

node on the other hand could use a CAS based store locally and exploit commonality across

the multiple virtual disks that are hosted locally, therebyallowing more virtual machines to be

hosted on a single node. The use of a CAS based cache, could reduce startup time (potentially

dominated by the time required to fetch the virtual disk) from ‘a few minutes’ [55] to a smaller

amount by exploiting commonality between data to be fetchedand data available locally.
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Or take the case of a grid application that periodically checkpoints its data for recovery

or visualization purposes. For example, the TeraShake project generates close to 50 TB of data

from one run [89]. Of this about 43 TB comprised of data generated iteratively, each time

step. Such behavior is not uncommon for scientific applications. In these applications another

requirement is to drain the low capacity local scratch storage volume so that the data from the

next iteration can be stored. CAS can once again be useful here by exploiting any commonality

across iterations. The savings achieved in the storage and network bandwidth requirements can

potentially change a task (like ‘on the fly’ graphics for TeraShake) from the realm of infeasible

to feasible.

Key to this usage of CAS, is the assumption of finding commonality in data. Common-

ality however, is an intrinsic property of the dataset itself. Very few analyses are available into

the commonality inherent to datasets themselves. These arein the context of user data like web-

pages[100], home-directories[80, 12], source-code[128], virtual-machine image snapshots[83],

or storing employee’s file-systems [93]. We wish to find out how much commonality exists in

data from real world applications and what overheads can be expected in exploiting this com-

monality using CAS. To the best of our knowledge, this is the first study into the use of CAS

on real world data from live applications. What has made thiswork more challenging is that

common, publicly available block level or file level traces do not contain enough information

about the actual content of the data. Hence we prepared and compiled the applications and

used the content addressable file-system platform developed in Chapter 3 to run the application

benchmarkslive and generate traces containing the relevant information.
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In this chapter, we investigate, i) the commonality presentin real-world data; ii)the stor-

age space savings using CAS; and iii) the network bandwidth savings when using a CAS repos-

itory and a local content addressable cache. A CAS based store has hidden overheads affecting

not just the amount of storage space required, but also the error resilience of data. By removing

duplicate chunks of data, and hence reducing the redundancyof data, CAS magnifies the loss

inflicted on storage when data corruption occurs. We commenton these overheads and also on

the run-time overheads that are seen when using a CAS-based file system.

We introduce our CAS evaluation methodology and benchmarksin Section 4.2 and eval-

uate the benefits and challenges posed by CAS in Section 4.3 and Section 4.4 respectively. Sec-

tion 4.5 has a discussion on the lessons learned from this analysis that might help a design a CAS

based system and/or decide suitability of a CAS based systemfor the application in question.

Section 4.6 outlines the related work before summarizing our results in Section 4.7.

4.2 Methodology for Evaluating the Efficacy of CAS

To undertake an analysis of CAS on data generated by an application, one would require

a trace-log of all the read/write requests. The requests should contain information about either

the content being read/written so that it’s CAS name (SHA1 hash) can be generated, or the CAS

name (the SHA1 hash) itself. Unfortunately, this is not trueof any of the commonly available

public traces that we know of. In fact, most traces record just the meta-data information, not the

content of the requests, which is essential for this study. Even if such a trace with the chunk

names were to exist, in order to analyze the application dataat a different chunksize, one would

need to re-run the application on a file-system using the new chunksize – a simple extrapolation

would lead to inaccuracies.
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Hence we needed a mechanism to run the application(s), calculate and record the SHA1

hashes of the data and all the I/O requests. For this reason wechose to use our experimental con-

tent addressable file-system – CAPFS (described in Chapter 3. As detailed in the previous chap-

ter, each CAS server (data server) exports two primitives, i) get(hash), and ii) put(hash,data).

To implement these primitives, the CAS server manages, i) a simple in-memory database of

hash, locationtuples for chunks housed on the server, and ii) the data chunks themselves. In

our experimental setup CAPFS was used with POSIX consistency semantics on a single CAS

server. The CAS server was configured to use an in-memory hashtable as the database, indexed

by the 20 byte SHA1 hashes. Using a single CAS server simplified sequencing of the get/put

requests in the trace log. Similar trace logging was enabledat all the client nodes running the

application benchmark. The trace thus generated at the client and CAS server was sufficient to

reconstruct the execution of the benchmark without runningit again. We ran CAPFS with vari-

ous chunksizes and the traces thus obtained were analyzed. Instrumentation of the CAPFS client

and server daemons gave valuable insight into CAS based performance issues such as SHA1

hash generation overhead, as described later.

The experiments were run on an IBM xSeries 20-node cluster. Each each node has a

dual hyper-threaded Xeon clocked at 2.8 GHz, equipped with 1.5 GB of RAM and a 36 GB

SCSI disk. The nodes run Redhat 9.0 with Linux 2.4.20-8 kernel compiled for SMP use and are

connected by a gigabit ethernet network.

4.2.1 Applications used as Benchmarks

A synthetically generated dataset may either contain too little commonality (e.g. a dataset

made from random data) or might have too many regular patterns (e.g. a dataset made from
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Name Type Description Size
gene-dbase Static Dataset Dataset containing genes from GenBank 103 MB

btio Live Application Part of the NAS parallel benchmark set 400 MB
bssn Live Application The BSSN PUGH benchmark from Cactus 1.6 GB

heat-solver Live Application A generic heat-solver 106 MB
dbt2 Live Application OSDL Database Test 2 - a TPCC-like benchmark306 MB

Fig. 4.1. Benchmarks used

repeating different entries). In essence, commonality is an inherent property of an application’s

data, and a study of CAS would be highly dependent on the amount of commonality in data.

With this factor in mind, we use the five datasets listed in Table 4.1 as benchmarks for studying

the performance of CAS.

Thegene-dbasedataset contains a set of 10 randomly chosen genomes from theNCBI

GenBank database [84]. The genomes were uncompressed and un-tarred after download to form

the dataset. We were unable to compile a suitable application that uses this dataset. Hence this

dataset was statically analyzed as-is for inherent commonality. The other four datasets are the

result of the execution of a live application, and are hence indicated as such Table 4.1. The BTIO

application [82] is based on a computational fluid dynamics (CFD) code that uses an implicit

algorithm to solve the 3D compressible Navier-Stokes equations. We ran the A class version of

the application using the full-mpiio version. Thebssnapplication is a Cactus [23] benchmark

application of a numerical relativity code using finite differences on a uniform grid [21]. It uses

the CactusEinstein infrastructure to evolve a vacuum space-time, using the BSSN formulation of

the Einstein equations. Theheat-solveris a standard heat solver written in Fortran using MPI.

btio, bssnandheat-solverrun in iterations, create data periodically and update either the same

data or generate new data during the application lifetime. These three scientific applications can
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be configured to run on a single node or multiple nodes.dbt2 is the OSDL Database Test 2

benchmark [35]. It is a TPCC-like benchmark that loads tables into a Mysql server at start-up

and runs queries on these tables for a specified time. We configured the benchmark to run with

three warehouses (with default values) and ran queries on all three warehouses for five minutes.

The Mysql server was configured to store it’sInnodb tablespace on the file-system exported by

CAPFS. All other tables that were loaded by Mysql were also stored on this file-system. The

doublewrite buffer was stored on a local scratch file-system. We trace the execution of all the

live applications by instrumenting the CAPFS filesystem. The trace logs thus obtained help us

to do post-mortem analysis on the data. The above five datasets cover data from three scientific

applications, one on-line transaction processing (OLTP) benchmark and one dataset containing

archival data (gene-dbase). The datasets thus acquired are from different sources andof varied

sizes.

4.3 CAS: Pros

In this section we investigate two advantages offered by CAS- i) savings in storage space,

and ii) savings in network bandwidth from use of a CAS-based cache at a client.

4.3.1 Savings in Storage Space

CAS has a direct impact on the amount of space required to store data. We compare the

savings obtained by the use of CAS against a default non-CAS case where the data is stored on

a log-based file-system (no in-place writes).
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Fig. 4.2. Savings in storage space as a function of chunksize

4.3.1.1 Impact of chunksize

The chunksize in use for a CAS-based store is a tunable parameter that affects its per-

formance. The curves in Figure 4.2 depict the effect of chunksize on the space required to store

the datasets under consideration. As one might expect, the savings in storage space are higher at

smaller chunksizes. Figure 4.2 shows that alllive applications benefit from CAS. This in itself

is a very surprising result indicating that applications that manage floating point data (scientific

applications) and binary records exhibit some commonality.

Thebssnbenchmark at a 128-byte chunksize achieves 99% disk-space savings. As the

chunksize increases to 1 KB and 2 KB, the savings fall only marginally to 98% and 97% re-

spectively. The savings for theheat-solverdata decrease from 19% at a 128-byte chunksize to a

steady value of 5% at a 2 KB chunksize and beyond. The use of CASsaves saves 6% at a 128

byte chunksize forbtio, and about 3% at chunksizes greater than 4 KB. Thedbt2 benchmark
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also benefits tremendously from the use of CAS, with the savings declining marginally from

72% at a 128-byte chunksize, to 64% at a 16 KB chunksize, falling precipitously from there on.

The reason behind the gentle decline in savings till the 16 KBchunksize lies in the fact that the

Innodb tablespace housed on the CAS store uses an internal page size of 16 KB. As a result,

all chunksizes less than or equal to this value extract the same amount of commonality from

the tablespace data. This also explains the sharp drop in savings beyond the 16 KB chunksize.

Thegene-dbasedata has some exploitable commonality (12%), only at the smallest chunksize

of 128-bytes. This is not too surprising considering that this dataset contains binary data. The

gene-dbasesavings values when compared with the others, indicates that there could be other

reasons for finding commonality at higher chunksizes in the other applications. We investigate

this next.

4.3.1.2 Applications benefiting from CAS

We can view commonality in data as arising from – i)incidental commonalitybetween

data chunks generated in the same iteration, and ii) commonality due to data chunks that stay

un-modified across iterations (iterative commonality). The three scientific applications (bssn,

heat-solver, btio) have clear, well-defined iterative behavior in data generation. Thedbt2 and

gene-dbasedatasets do not have such iterative data generation patterns and hence any gains

from the use of CAS are realized by incidental commonality inthe data itself. It is important to

note here that CAS based schemes can exploitbothtypes of commonality, while non-CAS based

schemes may be able to identify only iterative commonality,as shown below.
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Fig. 4.3. Identifying commonality in data due to iterative behavior

In order to quantify commonality resulting from the iterative nature of an application,

we applied adiff like filter and compared the data generated across iterations. This was accom-

plished by comparing the list of hashes for data belonging toone iteration and the next. The

savings thus obtained (shown in Figure 4.3) are obtained from data remaining unchanged across

iterations. The curves labeled asbssn, heat-solver,and btio are the identical to similarly la-

beled curves in Figure 4.2, while the curves obtained by applying thediff filter appear with adiff

subscript.

We observe that there is significant iterative commonality.For example, the two curves

for btio and btiodiff are identical indicating that all the savings for this application is due

commonality across iterations. Similarly, a large fraction of the savings for the other two appli-

cations (bssnandbtio) come from their iteration based behavior. The incidental commonality

within data chunks of an iteration is the difference in values between a curve and its diff-based
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version in Figure 4.3. This value varies not just with the specific application itself, but also with

chunksize. Forbssn, this value is as high as 21% at a 1 KB chunksize. In the case ofheat-solver,

this difference is as high as 7% at a 128-byte chunksize, but tapers down to less than a percent at

a 1 KB chunksize, whilebtio hardly has any commonality between chunks of the same iteration.

This brings us to the conclusion that, i) commonality from older iterations provides sig-

nificant savings, which may be be realized by the use of a non-CAS, diff-based mechanism; and,

ii) applications also have commonality across data chunks within the same iteration. Savings

from the latter can only be exploited by CAS based schemes. The extent varies not just from

application to application, and also with chunksize.

4.3.1.3 Commonality Profile

We now analyze the commonality profile of the data housed at the CAS store for possible

clues to the source of commonality in the respective datasets. Figure 4.4 examines a CAS-based

store that houses the data generated from an entire run of an application benchmark. The x-

axis lists each chunk in the system and its commonality is shown on the y-axis. The chunks

are numbered in decreasing order of commonality. Thebtio data (Figure 4.4(c)) stands out

for having a low and flat profile, indicating that the dataset has hardly any commonality. The

observable commonality of 40 for a large number of chunks, indicates that certain portions of

the dataset, never change in value throughout the 40 data-generation iterations of the application.

The left-most chunk or chunk #1 is the chunk that occurs most frequently in the data. The

dbt2data (Figure 4.4(d)) is unique in that if few leftmost chunksare ignored, then the remaining

dataset exhibits very little commonality. For example, at 128-byte chunksize, the commonality

of the chunks (in order) are 3074290, 2429, 1276, 1249, 474; while at a 1 KB chunksize the
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Fig. 4.4. Commonality profile.
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commonality of the chunks are 343846, 201 ... and at a 32 KB chunksize the first chunk has

a commonality of 10048 followed by a commonality of just 9. Clearly the first chunk brings a

hugeamount of savings. We manually inspected the data to find thatthis chunk is thezero chunk

(a chunk composed entirely of zeroes). This is perhaps a result of the database’s tablespace

allocation policy where 64 contiguous pages (each of 16 KB size) are allocated together to reduce

fragmentation. If this chunk is ignored, thedbt2data looks surprisingly similar to theheat-solver

data (Figure 4.4(b)). Similarly, for thebssndata (Figure 4.4(a)), at a 128-byte chunksize, the

most common chunk occurs over 9 million times. This too was found to be the zero chunk,

indicating that thebssndata contains sparse matrices. The zero-block provides 76%of the space

savings out of the 99% savings shown in Figure 4.2. The remaining 23% savings obtained

from non-zero blocks compares favorably with the 19% savings for theheat-solverbenchmark

(Figure 4.2). Theheat-solverandbtio data were found to contain no zero blocks at all.

An important lesson here is that applications that use sparse matrices or tables, out of ob-

vious program design or as a result of internal data allocation policies, can benefit tremendously

from the use of CAS.

4.3.2 Content Addressable Caching: Savings in Network Bandwidth

The use of CAS impacts the amount of data to be sent over the network in two ways.

First, CAS can be used as a compression mechanism. By internally chunking a large read or

write into smaller parts, CAS removes the repeated chunks and sending only the unique chunks

over the network. Second, CAS can be viewed as a caching technique to eliminate not just reads

but also writes to a remote repository. For example, a write may not require the actual data to

be written out if the chunk to be written already exists in theCAS repository. At the same time,
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similar to a more traditional data cache, a read need not be requested from the repository if it

can be satisfied by another chunk with the same content, available from a locally cached pool of

chunks fetched earlier. The results in this section indicate the benefits of using CAS for reducing

network network data.

For this analysis, the trace of the read/write requests described in Section 4.2 were used

to evaluate the performance of a local cache on the client node, with LRU being the eviction

policy. The percentage savings obtained with a buffer of a size S in Figure 4.5 indicates, i)

savings when using a CAS based cache of size S bytes to absorb reads/writes, and ii) savings

in network bandwidth when outgoing messages are buffered byupto S bytes. The baseline case

(the 100% mark) represents the size of the data to be sent whenno caching used. We compare the

effectiveness of the CAS based caches against non CAS cacheswhich would cache data based

on file offsets.

The applications have a mostly sequential write behavior and hence have minimal tem-

poral locality. Hence, the spatial locality of reads accounts for the savings obtained with a

traditional (non CAS) cache. We observe in Figure 4.5(d) that the three scientific applications

perform very poorly when using a traditional LRU-based cache, achieving less than 0.5% sav-

ings even in the best case (32 KB chunksize). The CAS based schemes perform impressively

under the same conditions. In fact, we can reason that a CAS based LRU policy will always out-

perform an LRU based cache – a CAS based cache exploits not just temporal and spatial locality,

but also locality of content. For example, a request for acoldchunk (a chunk that has never been

accessed before), which is not spatially co-located to chunks being accessed recently, can still be

satisfied from a CAS based cache, provided another chunk withthe same content already exists
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Fig. 4.5. Percentage savings in network I/O when using a content addressable cache
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in the cache ! In cases where there is absolutely no commonality in the data, a CAS based cache

will perform as well as a non-CAS LRU cache.

We observe that the use of CAS tremendously benefitsbssn(Figure 4.5), in-spite of this

being a sequential, mostly write-only workload. This result illustrates the ability of a CAS based

cache to reduce write traffic by removing writes containing same content, even when temporal

locality is absent (sequential workload). As a result, the amount of data to be written by thebssn

benchmarkcan be reduced by almost 100% at a 1 KB chunksize, using a very small CAS based

cache. This is clearly due to the large commonality inbssndata, as seen previously.

Overall, the use of CAS brings tangible results for all the three scientific applications. For

an iterative application if the CAS based cache is large enough to hold the data from an entire

iteration, the next iteration can then exploit commonalityacross iterations. This is corroborated

by Figure 4.5(b), wherebtio (which generates 10 MB of data per iteration) performs better when

using a cache at least 10 MB large. Similarly in the case ofheat-solver, which generates a file

of size 2 MB per iteration, a 2 MB sized CAS based cache is enough to exploit commonality.

For both applications, savings of the order of 4% is achieved. On the other hand, forbssnwhich

generates about 260 MB of data per iteration, the savings occur with a much smaller cache size.

This indicates that it is not the size of the data in the whole iteration that impacts the minimal

cache size. Rather, it is the size of theuniquedata generated per iteration. Recall from Figure 4.2,

that about 99% of thebssndata can be eliminated via CAS. This leaves about 1% of the data as

data belonging to unique chunks, which fits in well with our hypothesis regarding the cache size.

Thedbt2benchmark also shows remarkable benefits from the use of a CASbased cache,

indicating that eliminating redundant data brings very significant gains (Figure 4.5(b)). At a 32
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Fig. 4.6. Percentage savings in network I/O with a CAS based cache on a multi-node experiment

KB chunksize, the performance drops noticeably due to the smaller 16 KB internal page size

used by the application.

The heat-solverapplication creates new data every iteration as a new file. Asa result,

a traditional is helpless, while the CAS based cache still has a reasonable hit-rate. This stems

from the ability of a CAS based cache to look atall the data encountered, even across file-names.

However, for a fair comparison, we did not disadvantage the LRU-based non-CAS cache in this

manner when calculating the curve forheat-solverin Figure 4.5.

Multi-node experiments : We also evaluate the savings obtained with a CAS based

cache when running the scientific applications on multiple client nodes (dbt2 runs on a single

node). Figure 4.6 shows the savings obtained on node 0, when running the application on mul-

tiple nodes, each using a CAS based cache. Figure 4.6(a) indicates that when each node deals

with a specific subset of the whole data, there might be significantly more commonality to be

exploited. On increasing the number of nodes from 1 to 4 to 9 for btio, the savings obtained by

the use of a very small cache increase from about 4% to 18% to almost 40% respectively. In fact,
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if a larger cache size were (100 MB in the 4-node case, or 50 MB in the 9-node case), then the

benefits would be even higher. As the number of nodes increase, the data generated per iteration

per node bybtio decreases, hence a progressively smaller cache size is required to realize the

benefits. On the other hand, poor data-partitioning across nodes leads to minimal or negative

increase in savings, with increase in number of client nodes, as visible in Figure 4.6(b). Here,

in the case ofheat-solver, on increasing the number of client nodes from 1 to 4, the savings

decrease marginally from 5.5% to 4.6%. However, it takes a much smaller cache size (0.5 MB)

to achieve these savings with 4-nodes. On going up to 9-nodes, the data savings increase to 19%.

Thebssndata has close to 100% savings for multi-node experiments and hence is not shown.

In summary,

• The use of a content addressable caches is always beneficial over a non-CAS based cache.

• For optimal performance from a CAS based cache with an iterative application, the cache

size allocated should be larger than the amount of unique data generated per iteration.

• CAS based caching performs even better when applications partition data across nodes to

do the computation in a distributed manner.

4.4 CAS: Cons

In this section we look at the demerits of using CAS. We investigate the problem of added

overheads in terms of maintaining extra meta-data, concerns of decreased error resilience at the

CAS store and performance related issues.
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Fig. 4.7. Savings in storage space as a function of chunksize, including meta-data overheads

4.4.1 Meta-Data Overheads

The preceding discussion from Section 4.3.1 indicates thata CAS based store has the

potential for significant space savings. As described in Chapter 2, these savings have an added

cost – that of maintaining an additional mapping from file offset (chunk number) to the hash

(the name) of the chunk. This meta-data, referred to as therecipe, stores a hash value for each

N bytes of the file (N being the chunksize of the CAS file-system). On deducting the cost of

storing the hashes (20 bytes per hash for SHA1), the net savings obtained from the use of CAS

are shown in Figure 4.7.

For bssndata, the savings increase from their 128-byte value of 84% to a peak of 96.5%

at at a 1 KB chunksize. The savings then decrease monotonically to 70% at a 32 KB chunksize.

This interesting curve is a result of the tension between twoopposing trends – commonality

in data versus the meta-data overhead. Smaller chunksizes have the potential to expose more
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commonality, and hence can save more disk space. However, smaller chunksizes lead to more

chunks per file, hence largerrecipes, leading to more meta-data overhead. The large overhead at

a 128 byte chunksize diminishes the savings from CAS, from a value of almost 99% in Figure 4.2

to 84% . As the chunksize increases to 1 KB and 2 KB from the 128 byte value, the commonality

decreases marginally (less than 1% in Figure 4.2), while themeta-data overheads drop 8-fold and

16-fold respectively. This remarkable drop in the meta-data overhead for almost no drop in the

savings leads to 1 KB being the most optimal chunksize for storing bssndata. Beyond a 2

KB chunksize, the commonality itself drops appreciatively, leading to a significant drop in the

savings. The nature of thedbt2curve is almost identical, peaking at a 1 KB chunksize.

A similar trend is also observed for theheat-solverandbtio applications. Theheat-solver

application peaks at a 512-byte chunksize, saving 7.8% storage space and then falls marginally to

6.6% at 1 KB. Beyond that the curve falls further. For small chunksizes, the savings for thebtio

application starts in negative territory – at a 128-byte chunksize, the CAS store requires 9.6%

morestorage than a conventional data store ! Clearly, this is dueto the added overhead of having

to maintain recipes, while at the same time, not finding any space savings due to commonality.

With an increase in chunksize, from a 128-byte value to a 2 KB value, commonality stays rela-

tively constant at around the 5% mark (Figure 4.2), while themeta-data overhead drops 16-fold.

As a result, the curve has its highest savings of 4.4% at a 2 KB chunksize. Thegene-dbase

data does not exhibit any commonality (Figure 4.2) and the added meta-data overhead makes the

CAS store inefficient.

The above study indicates that small chunksizes of around 1 KB are best for storage

space savings. At smaller chunksizes meta-data overheads can even overwhelm any savings

from commonality.
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Fig. 4.8. Storage profile for 128-byte chunks

4.4.2 Decreased Error Resilience

By storing duplicate data chunks just once, a CAS based storeachieves space savings or

compression, at the cost of error resilience. If the value of a chunk were measured as the amount

of file data (user data) lost upon losing a single chunk in the repository, then for a traditional

data store, each chunk would be equally valuable. Under similar conditions, in a CAS based

store, a chunk with a higher commonality would be more valuable, implying that it’s loss can

cause much more damage than in a traditional data store. Using the data from Figure 4.8, we

can estimate the amount of user data rendered unusable on losing a certain amount of (CAS

based) storage. Specifically, we would like to find out the fraction of the user data lost on losing

a certain fraction of the storage space. We observe that the user data lost upon destruction of

chunk i in the storage system is given by

lossi = commonalityi ∗ chunksize (4.1)
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In the worst case scenario for a CAS store, we would lose the most valuable chunks (chunks with

highestlossi values) first. Arranging all the chunks in non increasing order of theirlossi values,

and choosing this sequence for progressive loss of storage data generates Figure 4.9. They = x

line shows the baseline case – the non CAS store. A slope of oneindicates that losing B bytes of

storage would cause a loss of exactly B bytes of user data in the non CAS case. For CAS data,

as expected, higher commonality in data leads to poorer error resilience. From Figure 4.9 we

observe the corresponding trend — the smaller the chunksize(more commonality), the farther

the curve from the non CAS case, and hence higher damage on loss of single chunk. This stems

from the tendency of smaller chunksizes to expose more commonality in the data. Thebssn

anddbt2data, which have a large amount of commonality, also have theworst error resilience.

At a 1 KB chunksize, losing a few percentage of the storage space can destroy close to 100%

of the user data forbssn. Increasing the chunksize to 32 KB reduces this probabilityto about

60%. In theheat-solver and btiodata, we notice that the use of a 1 KB chunksize brings the loss

probability close to the 32 KB chunksize loss probability.

On the upside , CAS exposessomeinformation about the value of a chunk, to make

informed replication choices. A suitable replication policy could be chosen for a chunk, perhaps

based on the commonality of a chunk, or its access popularity, or its age, or even a combination

of the above. Using such a policy, one might significantly improve the error resilience of the

right chunks, or the dataset as a whole, without wasting too much space. For example, a policy

could choose to allocate a certain amount of storage entirely for replication of data. Figure 4.10

shows the effect of one such replication policy on error resilience of thebssndataset for a 1 KB

chunksize. In this policy, the chunks are replicated in a greedy manner depending on their value

as calculated in equation 4.1. The percentage number indicated in the graph indicates what
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Fig. 4.9. Error resilience of data store for different chunksizes: worst-case scenario.
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Fig. 4.10. Effect of replication on error resilience.

percent of the un-replicated CAS data store was additionally allocated for replicated chunks.

Even a small amount of replication (5%) makes significant difference to the error resilience of

the dataset as a whole.

4.4.3 CAS Performance Overheads

Data in a CAS based chunk store undergoes more processing than in a traditional file

system. For example, as shown in in Figure 3.1, in the CAPFS file system, the CAPFS kernel

module intercepts a write (and all other system calls) and passes it down to a user-space CAPFS

daemon. This daemon chunks the data and generates a SHA1 hash(CAS name) for all chunks.

It updates the file recipe and sends the chunks to the CAS data servers. On receiving a chunk, a

data server first looks up it’s database of hashes to find if thechunk already exists. If it is a new

chunk then an entry is added to the database, indicating the name and the assigned disk position

for the chunk. The chunk is then finally written out to disk.
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The chunksize critically affects the performance of the CASstore. A small chunksize

increases the recipe size of the file (thus increasing the network transfer size to the meta-data

server), causes inefficient network messaging and poor diskthroughput (due to small writes) at

the data server. Unlike a traditional filesystem, where large, contiguous writes are sent to disk,

a data server processes one chunk at a time. Hence, the largest contiguous write that a data

server commits equals the chunksize. The number of chunks tobe processed (which depends on

the chunksize) affects not just the hash generation time, but also the time required to query and

update the database at a data-server.

In order to quantify the net effect of the above factors, we observed the wall-clock time

required to store 200 MB of data into CAPFS. In this experiment, we are interested in identifying

the overheads of various components of a CAS based system. Inour experiment we ran CAPFS

with the data server and the meta-data server housed on the client itself to eliminate any network

related costs. Then we generate a 200 MB file from /dev/urandom and place it in /dev/shm.

The time to copy this file to the CAPFS filesystem was noted and averaged over multiple runs.

Between each run the filesystem was un-mounted, cleaned of pre-existing data and re-mounted

again.

Figure 4.11 shows the results of this experiment. TheSHA1curve indicates the time

required to generate the SHA1 hashes. Thelookupcurve indicates the time required to process

the original data (generate chunks, generate SHA1 hash and then query the CAS database for

chunk name entry) upto the point where the CAS database is looked up for the hash. The

total curve indicates the total time required (including the above lookup time) to complete the

operation including disk I/O.
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Fig. 4.11. Time required to write 200 MB of data to a CAS store

The SHA1 hash generation cost is larger at small chunksizes.At a 128-byte chunksize

it accounts for 5.8 seconds out of a lookup time of 22.5 seconds and drops to 1.9 seconds out

of 10.2 at a 1 KB chunksize. At 32 KB this reduces to 1.5 secondsout of 8.8 seconds for the

lookup. In general the SHA1 cost is about 14% of the total time. The disk I/O overhead at the

data-server shows up as the difference between thelookupand thetotal cost curves. It accounts

for almost half the total time at small chunksizes and settles at nearly to less than 20% of the

total time for chunksizes of 2 KB and more. The lookup overhead comprises of SHA1 hash

generation, updating file recipe, time required to lookup each chunk name in the data-server

database and other constant miscellaneous overheads. The file recipes are updated in-memory

and do not contribute much to the above times. Hence on excluding this cost, and the SHA1 hash

generation cost, we are left with some constant miscellaneous costs and the database querying

overhead. This takes 16.6 seconds at a 128-byte chunksize, 8.3 seconds at a 1 KB chunksize, 7.7
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seconds at a 2 KB chunksize and finally settling to 7.3 secondsat a 32 KB chunksize. We surmise

that at small chunksizes the database component is significant due to the larger number of hashes

stored in the database. The original CAPFS project [134] used an inefficient implementation of

the database where this cost was much higher for small chunks.

Other overheads (not evaluated here) include space reclamation or garbage collection of

unused chunks resulting from over-writes or deletes at the data server. One can imagine that

a garbage collection daemon would periodically wake up and delete data. If such behavior is

undesirable, then this could perhaps be done as part of anfsck operation. This feature was

disabled in our tests and the cost has been ignored in this study.

Our conclusions are as follows,

• A 1 KB chunksize or larger yields the ‘best’ file system performance.

• Commonality information of chunks can be used to implement simple replication policies,

that use little additional space, but considerably reduce the error-proneness of CAS data

• SHA1 hash generation costs are not significant. When ignoring network transmission

times, these costs come to less than 15%.

• The most significant overhead is querying of CAS repository for the presence of a chunk.

This overhead grows significantly with increase in the number of chunks housed on the

repository.

4.5 Discussion

When to use CAS :As seen in Section 4.3.1, commonality varies from application to

application. In certain applications, the presence of commonality may be due to the iterative
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data generation behavior of the application. A good examplefor this case are the scientific ap-

plications that periodically checkpoint their results and/or generate data iteratively. Other cases

where commonality can be hoped for, include applications that manipulate large sparse matri-

ces, bitmaps or tables. Development and experimental platforms often compile and execute the

same workload multiple times till confidence is attained. Such platforms would incur negligible

storage and network I/O costs after the very first run, since the data would already exist on the

CAS server. When commonality due to data generation or usagebehavior is not obvious, space

savings should not be the primary motivation behind the use of CAS.

As seen in Section 4.3.2, use of a content addressable cache is a good design choice.

In the worst case of no extractable commonality, a CAS based cache will perform as well as a

non-CAS cache with added computational overheads. This boost in performance comes from

the ability of CAS to look not just at different parts of a file,but across files as well (global

naming). By use of this property of CAS for de-linking the chunk namefrom filename, a system

can achieve exploit caches without concerns of consistencyas outlined in [134, 128].

What chunksize to use :Our results indicate that at small chunksizes the overheadsout-

weigh any gains from the use of CAS. Use of a small chunksize of1 KB or even 2 KB provides a

good trade off between gains from space savings/caching, meta-data overheads, error resilience

concerns and performance.

4.6 Related Work

The Farsite distributed file-system from Microsoft was perhaps the first study [13] into

existing commonality in file-systems. In their investigation however, Bolosky et. al. look at

eliminating duplicate data at the file granularity rather than at a file-system block granularity.
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Muthitacharoen et. al. proposed the Low Bandwidth File System [80] that eliminates common-

ality in the network data stream across variable sized chunks. Rabin [96] introduced the idea of

generating variable sized chunks by detecting natural block boundaries. Broder et. al. present

applications of this algorithm [17] and Chan et. al. providean implementation for the same [26].

The Farsite project implements a Single Instance Store (a CAS store) for the Windows

2000 NTFS volume [12, 4]. The Plan 9 project from Bell Labs uses the Fossil file-system [94]

to store snapshots of a live system on top of Venti [93], a content addressable backend. CAPFS

or the Content Addressable Parallel File System [134] is a cluster file-system that exploits CAS

for bandwidth savings. Various content based chunking methods have been used in Pasta[78],

Pastiche[32] and REBL[67]. Ajtai et. al. [5] provide a comparison of the above methods.

Tolia et. al. first coined the termrecipes[130] as a means of using hashes to summarize

file content. The use of hashes as a means of detecting similarcontent has been looked at

in [74, 18, 19]. The rsync protocol [131] uses MD5 hashes for comparing files. Cryptographic

hashes have also been used to synchronize content across replicated collections [120, 56]. Chord

[117], CFS [34] and Pond [99] exploit the global naming property of CAS. Sundr [71], Ivy [81],

Plutus [57] and Tripwire [59] use CAS based hashes to verify the integrity of data. Nath et. al.

provide an analysis of data from another real world application called Internet Suspend/Resume

in [62]. That study estimates the benefits of using CAS to house virtual machine snapshots.

Compare by hash, the underlying principle of CAS has been criticized in [51] for being

prone to collisions (two or more blocks generating the same SHA1 hash). More recently how-

ever, the Monotone team [77] and Black [10] have shown that this may not be a large concern.
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4.7 Chapter Summary

In this chapter, we have evaluated the pros and cons of content addressable storage for

five real world datasets and found it to be beneficial (to varying degrees) for storing scientific

data and data from a TPCC-like benchmark. We find CAS to be useful for applications that

display iterative data generation patterns, or manage sparse tables or datasets. Significant savings

in network bandwidth can be achieved by the use of a content addressable cache, only a few

megabytes in size. We find that a 1 KB, or 2 KB chunksize provides the best space savings,

when accounting for meta-data overhead due to SHA1 hashes. This chunksize also provides

good savings in network bandwidth and reasonable error resilience. We note that the overheads

of computing the SHA1 hashes in a CAS based store are about 14%, when neglecting network

I/O costs.

In this chapter, through our analysis of application benchmarks, we obtained a notion

of the benefits and demerits of CAS. Unfortunately, this study could not take into account real

world data usage patterns. For example, in the real world, applications are often run several

times, either with the same parameters or different ones. Each execution of the application

might generate exactly the same or somewhat similar data. For a traditional data store, the net

I/O generated would equal the I/O generated per execution times the number of executions. If

however, the system were to be run on a CAS based storage platform like CAPFS, then the

I/O generated after N executions of the application could besignificantly less than N times I/O

generated per execution. This would depend on how muchcommonalityexists between the data

generated across different executions. If the data generated is identical (application is run with

same parameters), then only 1/N th of the total data will need to sent to the storage over the
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network. To incorporate such usage behavior in the real world, we now turn our attention to

a case study analysis of an application, deployed in the realworld for a period of about seven

months.



www.manaraa.com

92

Chapter 5

Case Study: Internet Suspend/Resume

5.1 Introduction

The systems literature of recent years bears witness to a significantly increased interest

in virtual machine (VM) technology. Two aspects of this technology, namely platform inde-

pendence and natural state encapsulation, have enabled theapplication of this technology in

systems designed to improve scalability [24, 40, 47, 98, 124, 144], security [43, 65, 139], relia-

bility [9, 16, 28, 73, 135], and client management [27, 22, 64].

The benefits derived from platform independence and state encapsulation, however, often

come with an associated cost, namely the management of significant data volume. For example,

enterprise client management systems [27, 64] may require the storage of tens of gigabytes of

dataper user. For each user, these systems store an image of the user’s entire VM state, which

includes not only the state of the virtual processor and platform devices, but the memory and

disk states as well.

While this cost is initially daunting, we would expect a collection of VM state images

to have significant data redundancy because many of the userswill employ the same operating

systems and applications. Content addressable storage (CAS) [14, 80, 93, 107, 135, 141] is an

emerging mechanism that can reduce the costs associated with this volume of data by eliminating

such redundancy. Essentially, CAS uses cryptographic hashing techniques to identify data by its

contentrather than by name. Consequently, a CAS-based system will identify sets of identical
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objects and only store or transmit a single copy even if higher-level logic maintains multiple

copies with different names.

To date, however, the benefit of CAS in the context of enterprise-scale systems based

on VMs has not been quantified. In this study, we analyze data obtained from a seven-month,

multi-user pilot deployment of a VM-based enterprise client management system called Internet

Suspend/Resume (ISR) [63, 108]. Our analysis aims to answertwo basic questions:

Q1: By how much can the application of CAS reduce the system’sstorage requirements?

Q2: By how much can the application of CAS reduce the system’snetwork traffic?

The performance of CAS depends upon several system parameters. The answers to Q1 and Q2,

therefore, are analyzed in the context of the two most important of these design criteria:

C1: Theprivacy policy, and

C2: theobject granularity.

The storage efficiency of a CAS system, or the extent to which redundant data is eliminated, de-

pends upon the degree to which that system is able toidentifyredundant data. Hence, the highest

storage efficiency requires users to expose cryptographic digests to the system and potentially

to other users. As we shall see, the effects of this exposure can be reduced but not eliminated.

Consequently, criterion C1 represents a trade-off betweenstorage efficiency and privacy.

Object granularity, in contrast, is a parameter that dictates how finely the managed data is

subdivided. Because CAS systems exploit redundancy at the object level, large objects (like disk

images) are often represented as a sequence of smaller objects. For example, a multi-gigabyte

disk image may be represented as a sequence of 128 KB objects (or chunks). A finer granularity
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(smaller chunksize) will often expose more redundancy thana coarser granularity. However,

finer granularities will also require more meta-data to track the correspondingly larger number of

objects. Hence, criterion C2 represents the trade-off between efficiency and meta-data overhead.

The results obtained from the ISR pilot deployment indicatethat the application of CAS

to VM-based management systems is more effective in reducing storage and network resource

demands than applying traditional compression technologysuch as the Lempel-Ziv compres-

sion [145] used ingzip. This result is especially significant given the non-zero run-time costs of

compressing and uncompressing data. In addition, combining CAS and traditional compression

reduces the storage and network resource demands by a factorof two beyond the reductions

obtained by using traditional compression technology alone.

Further, using this real-world data, we are able to determine that enforcing a strict privacy

policy requires approximately 1.5 times the storage resources required by a system with a less

strict privacy policy. Finally, we have determined that theefficiency improvements derived from

finer object granularity typically outweighs the meta-dataoverhead. Consequently, the disk

image chunksize should be between 4 and 16 KB.

Sections 5.4 and 5.5 will elaborate on these results from thepilot deployment. But first,

we provide some background on ISR, content addressable storage, and the methodology used in

the study.
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5.2 Background

5.2.1 Internet Suspend/Resume

Internet Suspend/Resume (ISR) is an enterprise client management system that allows

users to access their personal computing environments fromdifferent physical machines. The

system is based on a combination of VM technology and distributed storage. User computing

environments are encapsulated by VM instances, and the state of such a VM instance, when idle,

is captured by system software and stored on a carefully-managed server. There are a couple of

motivations for this idea. First, decoupling the computingenvironment from the hardware allows

clients to migrate across different hosts. Second, storingVM state on a remote storage repository

simplifies the management of large client installations. The physical laptops and desktops in the

installation no longer contain any hard user-specific state, and thus client host backups are no

longer necessary; the only system that needs to be backed up is the storage repository.

Content servers

Clients (work) Clients (home)

winxp winxp
Checkin
(upload)

alice bob chuck

linux winxp

v1, …, vn-1, vn

Checkout
(download)

S D

Fig. 5.1. An ISR system.
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Figure 5.1 shows the setup of a typical ISR system. The captured states of user envi-

ronments are known as known asparcelsand are stored on a collection of (possibly) distributed

content servers. For example, in the figure, Bob owns two parcels. One environment includes

Linux as the operating system, and the other includes Windows XP. Each parcel captures the

complete state of some VM instance. The two most significant pieces of state are thememory

imageand thedisk image. In the current ISR deployment, memory images are 256 MB and

disk images are 8 GB. Each memory image is represented as a single file. Each disk image is

partitioned into a set of 128 KBchunksand stored on disk, one file per chunk.

For each parcel, the system maintains a sequence of checkpointed diff-basedversions,

v1, . . . , vn−1, vn. Versionvn is a complete copy of the memory and disk image. Each version

vk, 1 ≤ vk ≤ vn−1, has a complete copy of the memory image, along with the chunks from the

vk version of the disk image that changed between versionvk andvk+1.

Each client host in the ISR system runs aVM monitor that can load and execute any

parcel. ISR provides a mechanism for suspending and transferring the execution of these parcels

from one client host to another. For example, Figure 5.1 shows a scenario where a user transfers

the execution of a VM instance from a source hostS at the office to a destination hostD at

home.

The transfer occurs in two phases: acheckinstep followed by acheckoutstep. After the

user suspends execution of the VM monitor onS, the checkin step uploads the memory image

and any dirty disk chunks fromS to one of the content servers, creating a new parcel version on

the server. The checkout step downloads the memory image of the most recent parcel version

from the content server toD. The user is then able to resume execution of the parcel onD (even
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before the entire disk image is present). During execution,ISR fetches any missing disk chunks

from the content serveron demandand caches those chunks at the client for possible later use.

5.2.2 Content Addressable Storage

Content addressable storage (CAS) is a data management approach that shows promise

for improving the efficiency of ISR systems. CAS uses cryptographic hashing to reduce storage

requirements by exploiting commonality across multiple data objects [39, 67, 90, 130, 134, 141].

For example, to apply CAS to an ISR system, we would representeach memory and disk image

as a sequence of fixed-sized chunk files, where the filename of each chunk is computed using a

collision-resistant cryptographic hash function. Since chunks with identical names are assumed

to have identical contents, a single chunk on disk can be included in the representations of

multiple memory and disk images. The simplest example of this phenomenon is that many

memory and disk images contain long strings of zeros, most ofwhich can be represented by a

single disk chunk consisting of all zeros. A major goal of this study is to determine to what

extent such redundancy exists in realistic VM instances.

5.3 Methodology

Sections 5.4 and 5.5 present our analysis of CAS technology in the context of ISR based

on data collected during the first 7 months of a pilot ISR deployment at Carnegie Mellon Uni-

versity. This section describes the deployment, and how thedata was collected and analyzed.
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5.3.1 Pilot Deployment

The pilot deployment (pilot) began in January, 2005, starting with about 5 users and

eventually growing to 23 active users. Figure 5.2 gives the highlights. Users were recruited from

Number of users 23
Number of parcels 36
User environment Windows XP or Linux
Memory image size 256 MB
Disk image size 8 GB
Client software ISR+Linux+VMware
Content server IBM BladeCenter
Checkins captured 817
Uncompressed size 6.5 TB
Compressed size 0.5 TB

Fig. 5.2. Summary of ISR pilot deployment.

the ranks of Carnegie Mellon students and staff and given a choice of a Windows XP parcel, a

Linux parcel, or both. Each parcel was configured with an 8 GB virtual disk and 256 MB of

memory. Thegold imagesused to create new parcels for users were updated at various times

over the course of the pilot with security patches.

The content server is an IBM BladeCenter with 9 servers and a 1.5 TB disk array for

storing user parcels. Users downloaded and ran their parcels on Linux-based clients running

VMware Workstation 4.5.
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5.3.2 Data Collection

During the course of the pilot, users performed numerous checkin operations, eventually

creating 817 distinct parcel versions on the content server. In August, 2005, after 7 months of

continuous deployment, a snapshot of the memory and disk images of these parcel versions was

taken on the content server. In uncompressed form, the snapshot state would have consumed

about 6.5 TB. However, due to ISR’s diff-based representation and gzip compression, it only

required about 0.5 TB of disk space. This snapshot state was copied to another server, where it

was post-processed and stored in a database for later analysis.
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Fig. 5.3. Observed parcel checkin frequency

Figure 5.3 summarizes parcel usage statistics for the deployment data. Each point in the

figure represents a single parcel and indicates the number ofdays that parcel was active as well
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as its checkin frequency (average number of checkins per day). Parcels could be active for less

than the entire duration of the deployment either because the parcel was created after the initial

deployment launch or because a user left the study early (e.g. due to student graduation or end-

of-semester constraints). Since new users were added throughout the course of the pilot, during

post-processing we normalized the start time of each user today zero. No extrapolation of data

was performed, thus the usage data for a user who has used the system forn days appears in the

first n days worth of data in the corresponding analysis. We also removed several parcels that

were used by developers for testing, and thus were not representative of typical use.

5.3.3 Analysis

The August 2005 snapshot provided a complete history of the memory and disk images

produced by users over time. This history allowed us to ask a number of interesting “what if”

questions about the impact of different design choices, or policies, on the performance of the ISR

system. In particular, we explored three different storagepolicies: a baseline non-CASDelta

policy and two different CAS policies calledIP andALL. These are summarized in Figure 5.4.

In each approach, a parcel’s memory and disk images are partitioned into fixed-sized chunks,

Policy Encryption Meta-data
Delta private per-parcel key none
IP private per-parcel key (tag) array
ALL convergent encryption (tag, key) array

Fig. 5.4. Storage policy encryption technique summary.
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which are then encrypted, and optionally compressed using conventional tools like gzip.

As will be shown in sections 5.4 and 5.5, differences in the storage and encryption of

data chunks affect not only the privacy afforded to users butalso dramatically alter the resources

required for storage and network transmission. For our evaluations, we chose chunksizes of 4KB

(a typical disk-allocation unit for most operating systems) and larger.

Delta policy. In this non-CAS approach, the most recent disk imagevn contains a com-

plete set of chunks. For each versionk < n, disk imagevk contains only those chunks that differ

in disk imagevk+1. Thus, we say that Delta exploitstemporal redundancyacross the versions.

Chunks in all of the versions in a parcel are encrypted using the same per-parcel private

key. Individual chunks are addressed by their position in the image (logical block addressing),

hence no additional meta-data is needed. Memory images are represented in the same way. Delta

is similar to the approach used by the current ISR prototype (the current prototype only chunks

the disk image and not the memory image). We chose it as the baseline because it is an effective

state-of-the-art non-CAS approach for representing versions of VM images.

IP (intra-parcel) policy. In this CAS approach, each parcel is represented by a separate

pool of unique chunks shared by all versions,v1, . . . , vn, of that parcel. Similar to Delta, IP

identifies temporal redundancy between contiguous parcel versions. However, IP can also iden-

tify temporal redundancy in non-contiguous versions (e.g., disk chunki is identical in versions

4 and 6, but different in version 5), and it can also identify any spatial redundancywithin each

version.

As with Delta, each chunk is encrypted using a single per-parcel private key. However,

each version of each disk image (and each memory image) requires additional meta-data to

record the sequence of chunks that comprise the image. In particular, the meta-data for each
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image is an array oftags, where tagi is the SHA-1 hash of chunki. This array of tags is called

akeyring.

ALL policy. In this CAS approach, all parcels for all users are represented by a single

pool of unique chunks. Each chunk is encrypted usingconvergent encryption[37], where the

encryption key is simply the SHA-1 hash of the chunk’s original plain-text contents. This allows

chunks to be shared across different parcels and users, since if the original plain-text chunks are

identical, then the encrypted chunks will also be identical.

As with IP, each version of each disk image (and each memory image) requires additional

keyring meta-data to record the sequence of chunks that compose the image, in this case an array

of (tag, key) tuples, where keyi is the encryption key for chunki, and tagi is the SHA-1 hash

of the encrypted chunk. Each keyring is then encrypted with aper-parcel private key.

The IP and ALL policies provide an interesting trade-off between privacy and space ef-

ficiency. Intuitively, we would expect the ALL policy to be the most space-efficient because it

identifies redundancy across the maximum number of chunks. However, this benefit comes at

the cost of decreased privacy, both for individual users andthe owners/operators of the storage

repository. The reason is that ALL requires a consistent encryption scheme such as conver-

gent encryption for all blocks. Thus, individual users are vulnerable to dictionary-based traf-

fic analysis of their requests, either by outside attackers or the administrators of the systems.

Owner/operators are vulnerable to similar analysis, if, say, the contents of their repository are

subpoenaed by some outside agency.

Choosing appropriate chunk sizes is another interesting policy decision. For a fixed

amount of data, there is a tension between chunk size and the amount of storage required. In-

tuitively, we would expect that smaller chunk sizes would result in more redundancy across
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chunks, and thus use less space. However, as the chunk size decreases, there are more chunks,

and thus there is more keyring meta-data. Other chunking techniques such as Rabin Fingerprint-

ing [74, 96, 114] generate chunks of varying sizes in an attempt to discover redundant data that

does not conform to a fixed chunk size. However, as described in Chapter 2, the evaluation of

non-fixed-size chunk schemes is beyond the scope of this study.

The remainder of the study uses the data from the ISR deployment to quantify the impact

of CAS privacy and chunksize policies on the amount of storage required for the content servers,

and the volume of data that must be transferred between clients and content servers.

5.4 Results: CAS & Storage

Because server storage represents a significant cost in VM-based client management sys-

tems, we begin our discussion by investigating the extent towhich a CAS-based storage system

could reduce the volume of data managed by the server.

5.4.1 Effect of Privacy Policy on Storage

As expected, storage policy plays a significant role in the efficiency of the data manage-

ment system. Figure 5.5 presents the growth in storage requirements over the lifetime of the

study for the three different policies using a fixed chunksize (128 KB). As mentioned in Sec-

tion 5.3.2, the graph normalizes the starting date of all users to day zero. The growth in the

storage from thereon is due to normal usage of disks and storage of memory checkpoints be-

longing to the users. The storage requirement shown includes both the disk and memory images.
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Fig. 5.5. Growth of storage needs for Delta, IP, and ALL.

CAS provides significant savings.As shown in Figure 5.5, adopting CAS with the IP

policy reduces the required server resources at day 201 under the Delta policy by 306 GB, from

717 GB to 411 GB. This reduction represents a savings of 42%.

Recall that adopting CAS is a loss-less operation; CAS simply stores the same data more

efficiently than the Delta policy. The improved efficiency isdue to the fact that the Delta policy

only exploits temporal redundancy between versions. That is, the Delta policy only identifies

identical objects when they occur in the same location in subsequent versions of a VM image.

The IP policy, in contrast, identifies redundancy anywhere within the parcel – within a version

as well as between versions (including between non-subsequent versions).

Note that the 42% space savings was realized without compromising privacy. Users in a

CAS-IP-backed system do not expose the contents of their data to any greater degree than users

of a Delta-backed system.



www.manaraa.com

105

Relaxing privacy introduces additional gains. In systems where a small relaxation

of privacy guarantees is acceptable, additional savings are possible. When the privacy policy

is relaxed from IP to ALL, the system is able to identify additional redundancy that may exist

between different users’ data. From Figure 5.5, we see that such a relaxation will reduce the

storage resources required by another 133 GB, to 278 GB. The total space savings realized by

altering the policy from Delta to ALL is 61%.

On comparing ALL with IP in Figure 5.5, we see that the curves are approximately par-

allel to each other. However, under certain situations, a system employing the ALL policy could

dramatically outperform a similar system that employs the IP policy. Imagine for example a

scenario where a security patch is applied by each of a large number,N , of users in an enter-

prise. Assuming that the patch affected each user’s environment in the same way, by introducing

X MB of new data, an IP server would register a total addition ofNX MB. In contrast, an

ALL server would identify theN copies of the patched data as identical and would consequently

register a total addition ofX MB.

The starting points of the curves in Figure 5.5 are also of interest. Because the X-axis

has been normalized, this point corresponds to the creationdate of all parcels. To create a new

parcel account, the system administrator copies a gold image as version 1 of the parcel. Hence,

we would assume that the system would exhibit very predictable behavior at time zero.

For example, under the Delta policy which only reduces redundancybetween versions,

the system data should occupy storage equal to the number of users times the space allocated to

each user. In the deployment, users were allocated 8 GB for disk space and 256 MB for memory

images. Thirty-six parcels should then require approximately 300 GB of storage space which is

exactly the figure reported in the figure.
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For the IP policy, one would also expect the server to supporta separate image for each

user. However, CAS had eliminated the redundant data withineach of these images yielding an

average image size of approximately 4 GB. The observed 171 GBstorage space is consistent

with this expectation.

Under the ALL policy in contrast, one would expect the systemto store a single copy of

the gold image shared by all users, yielding a total storage requirement of 8 GB plus 256 MB

(closer to 4 GB, actually, due to the intra-image redundancyelimination). We were quite sur-

prised, consequently, to observe the 72 GB value reported inthe figure. After reviewing the

deployment logs, we determined that this value is due to the introduction of multiple gold im-

ages into the system. To satisfy different users, the systemadministrators supported images

of several different Linux releases as well as several instances of Windows images. In all, the

administrators had introduced 13 different gold images, a number that is consistent with the

observed 72 GB of occupied space.

Another point of interest is a disturbance in the curve that occurs at the period around 100

days. We note that the disturbance is significant in the Deltacurve, smaller in the IP curve, and

almost negligible in the ALL curve. We’ve isolated the disturbance to a single user and observe

that this anomaly is due to the user reorganizing his disk image without creating new data that

did not already exist somewhere in the system. Hence, we conclude that this must have been an

activity similar to defragmentation or re-installation ofan operating system.

5.4.2 Effect of Chunksize on Storage

In addition to privacy considerations, the administrator of a VM-based client manage-

ment system may choose to optimize the system efficiency by tuning the chunksize. The impact
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Fig. 5.6. Storage space growth for various chunksizes without meta-data overhead (y-axis scale
varies).
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of this parameter on storage space requirements is depictedin Figure 5.6; in this figure, we

present what the growth curves of Figure 5.5 would have been had we chosen different chunk-

sizes.

Note that the effect of this parameter is not straightforward. Varying the chunksize has

three different effects on efficiency.

First, smaller chunksizes tend to expose more redundancy inthe system. As a trivial

exercise, consider two objects each of which, in turn, comprises two blocks (Object1 = AB

andObject2 = CA). If the chunksize is chosen to be a whole object, the contentaddresses of

Object1 andObject2 will differ and no redundancy will be exposed. If the chunksize is chosen

to be a block, in contrast, the identicalA blocks will be identified and a space savings of 25%

will result.

Second, smaller chunksizes require the maintenance of moremeta-data. With the whole-

object chunksize from the example above, the system would maintain two content addresses, for

Object1 andObject2. With the block chunksize, however, the system must maintain two sets of

two content addresses so thatObject1 andObject2 may each be properly reconstructed. Note

further that this additional meta-data maintenance is required whether or not any redundancy

was actually identified in the system.

Third, smaller chunksizes tend to provide a reduced opportunity for post-chunking com-

pression. In addition to chunk-level redundancy elimination through CAS, intra-chunk redun-

dancy may be reduced through traditional compression techniques (such asgzip). However, as

the chunksize is reduced, these techniques have access to a smaller intra-chunk data pool on

which to operate, limiting their efficiency.
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Fig. 5.7. Server space required, after 201 deployment days.

To better understand the effect of chunksize, we analyzed the deployment data for all

three storage policies with and without compression under several different chunksizes. The

results are shown in Figure 5.7.

All three effects of chunksize can be observed in this figure.For example, Figure 5.7(a),

which ignores the increased meta-data required for smallerchunksizes, clearly indicates that

smaller chunksizes expose more redundancy. These gains forsmall chunk sizes, however, are

erased when the meta-data cost is introduced to the storage requirements in Figure 5.7(b). Fi-

nally, the reduced opportunities for compression due to smaller chunksize can be observed in

Figure 5.7(b) by comparing the IP and IP(gzip) or ALL and ALL(gzip) curves.

CAS is more important than compression.In Figure 5.7(a), the Delta curvewith com-

pressionintersects the IP and ALL curveswithout compression. The same is true in Figure 5.7(b)

with respect to the ALL curve. This indicates, that given appropriate chunksizes, a CAS-based

policy can outperform compression applied to a non-CAS-based policy.
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Fig. 5.8. Meta-data overhead expressed as a percentage of user data.

Considering meta-data overheads, the ALL policy outperforms Delta with compression

for all the chunksizes less than 64KB. This is a very remarkable result. Compression in the

storage layer may be a high latency operation, and it may considerably affect virtual disk op-

eration latencies. By use of CAS, one can achieve savings that exceed traditional compression

techniques! If additional space savings are required, compression can be applied after the appli-

cation of content addressing.

Figure 5.7(a) shows that compression provides an additional savings of a factor of two

to three. For example, the space demands for the ALL policy, drops from 87GB to 36GB when

using 4KB chunks, and from 342GB to 137GB when using 512KB chunks.

Exposing redundancy outweighs meta-data overhead.Figure 5.8 shows the ratio of

meta-data (keyring size) to the size of the data. We observe that this ratio is as high as 80% for

ALL, and 35% for IP at 4KB chunksize without compression and even higher after compression

is applied to the basic data. Yet, from Figure 5.7(b), we observe from the IP and ALL curves that
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reducing chunksize always yields a reduction in storage requirements. This indicates that the

gains through CAS-based redundancy elimination far exceedthe additional meta-data overhead

incurred from smaller chunksize.

The picture changes slightly with the introduction of traditional compression. The IP(gzip)

and ALL(gzip) curves of Figure 5.7(b) indicate that the smallest chunksize is not optimal. In fact,

we see from Figure 5.8 that the meta-data volume becomes comparable to the data volume at

small chunksizes.

Small chunk sizes improve efficiency.With Figure 5.7(b), we are in a position to recom-

mend optimal chunk sizes. Without compression, the optimalchunksize is 4 KB for the Delta, IP

and ALL policies. With compression, the optimal chunksize is 8 KB for the Delta(gzip) policy

and 16 KB for the IP(gzip) and ALL(gzip) policies.

5.5 Results: CAS & Networking

In a VM-based client management system, the required storage resources, as discussed

in the previous section, represent a cost to the system administrator in terms of physical de-

vices, space, cooling, and management. However, certain user operations, such as check-in and

checkout, require the transmission of data over the network. While the system administrator

must provision the networking infrastructure to handle these transmissions, perhaps the more

significant cost is the user time spent waiting for the transmissions to complete.

For example, a common telecommuting scenario may be that a user works at the office

for some time, checks-in their new VM state, travels home, and attempts to checkout their VM

state to continue working. In the absence of CAS or traditional compression, downloading just

the 256 MB memory, which is required before work can resume, over a 1 Mbps DSL line requires
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more than 30 minutes of wait time. After working at home for some time, the user will also want

to checkin their new changes. Because the checkin image is typically larger than the checkout

image, and because the upload speed of ADSL is often much slower than the download speed,

the checkin operation can often require two hours or more.

Consequently, we devote this section to characterizing thebenefits that CAS provides

in terms of reducing the volume of data to be transmitted during typical upload (checkin) or

download (checkout) operations.

5.5.1 Effect of Privacy Policy on Networking

As with storage, we begin the discussion by considering the effect of privacy policy

on networking. We note that our definition of privacy policy affects the representation of data

chunks in storage, not the mechanics of chunk transmission.However, the chosen storage policy

can affect the capability of the system to identify redundant data blocks that need not be sent

because they already exist at the destination.

As an example, suppose that a user copies a file within their virtual environment. This

operation may result in a virtual disk that contains duplicate chunks. Under the IP and ALL

policies, at the time of upload, the client will send a digestof modified chunks to the server, and

the server may respond that the duplicate chunks need not be sent because the chunks (identified

by the chunks’ tags) already exist on the server. Such redundant data can occur for a variety

of reasons (particularly under the ALL policy) including the push of software patches, user

download of popular Internet content, and the installationand compilation of common software

packages.
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(b) 128K, without compression
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Fig. 5.9. CDF of upload sizes for different policies, without and with the use of compression.
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Redundancy Comparison
Upload Download

(between client copy (between server version N
and...) and ...)

Delta server version N-1 current client version
IP server versions [1, N-1] current client version

ALL all versions/all parcels current client version

Fig. 5.10. Search space for identifying redundant blocks during data synchronization opera-
tions. Note that for download, the system inspects the most recent version available at the client
(which may be older thanN − 1).

During download (checkout) operations, the client code will search through the existing

version(s) of the user’s data on that client to identify chunks that need not be retrieved from the

server. As the system is only comparing the latest version onthe server with the existing version

on the client, the volume of data to be transmitted does not depend on the privacy policy. In

contrast, the volume of data transmitted during upload (checkin) operations does depend on the

privacy policy employed because, at the server, redundant chunks are only identified within that

user’s version history under the IP policy, but can be identified acrossall users’ version histories

under the ALL policy. These differences based on storage policy are summarized in Figure 5.10

and affect our discussion in two ways: (1) this section (Section 5.5.1), which investigates the

effects of privacy policy, only considers the upload operation, and (2) Figures 5.12 and 5.13 in

Section 5.5.2 contain curves simply labeled CAS that represent the identical download behaviors

of the IP and ALL policies.

CAS is essential.The upload volume for each of the storage policies with and without

compression is presented in Figure 5.9. Because the upload size for any user session includes

the 256MB memory image and any hard disk chunks modified during that session, the upload
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data volumes vary significantly due to user activity across the 800+ checkin operations collected.

Consequently, we present the data as a cumulative distribution function (CDF) plots. In the ideal

case, most upload sizes would be small; therefore, curves that tend to occupy the upper left

corner are better. Note that the ALL policy strictly outperforms the IP policy, which in turn,

strictly outperforms the Delta policy.

The median (50th percentile) and95th percentile sizes from Figure 5.9 are presented

along with average upload sizes in Figure 5.11. Note that themedian upload sizes tend to be

substantially better than the mean sizes, indicating that the tail of the distribution is somewhat

skewed in that the user will see a smaller than average uploadsizes for 50% of the upload

attempts. Even so, we see from Figure 5.11(c) that the tail isnot so unwieldy as to present sizes

more than a factor of 2 to 4 over the average upload size 95% of the time.

Figure 5.11(a) shows that, for the 128 KB chunksize used in the deployment, the use of

CAS reduces the average upload size from 880 MB (Delta policy) to 340 MB (ALL policy). The

use of compression reduces the upload size to 293 MB for Deltaand 132 MB for ALL. Further,

CAS policies provide the most significant benefits where theyare needed most, for large upload

sizes. From Figure 5.11(b) we see that CAS improves small upload operations by a modest 20

to 25 percent, while from Figure 5.11(c), we see that CAS improves the performance of large

uploads by a factor of 2 to 5 without compression, and by a factor of 1.5 to 3 with compression.

Thus, we observe that CAS significantly reduces the volume ofdata transmitted during upload

operations, and hence the wait time experienced at the end ofa user session.

CAS outperforms compression.Figure 5.11(a) indicates that the ALL policywithout

compression outperforms the Delta policywith compression for chunk sizes less than 64 KB (as

does the IP policy at a 4 KB chunk size). This shows that for ourapplication, inter-chunk CAS
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Fig. 5.11. Upload sizes for different chunksizes.
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techniques may identify and eliminate more redundancy thantraditional intra-chunk compres-

sion techniques. The difference may be substantial, particularly when the upload size is large.

As Figure 5.11(c) shows, the ALL policywithout compression (chunksize=4 KB) outperforms

the Delta policywith compression (chunksize=512 KB) by a factor of 4.

IP identifies both temporal and spatial redundancy. For each of the components of

Figure 5.9, we see that the IP policy consistently outperforms the Delta policy. Both of these

policies restrict the search space for redundancy identification to a single parcel. However, the

Delta policy only detects temporal redundancy between the current and last versions of the par-

cel, while the IP policy detects temporal and spatial redundancy across all versions of the parcel.

The savings of IP over Delta indicate that users often createmodified chunks in their environment

that either existed at some point in the past, or in another location within the parcel.

ALL identifies inter-parcel savings. In all of Figure 5.9, the common observation be-

tween an IP and ALL comparison is that the ALL policy consistently outperforms the IP policy.

This observation is consistent with our intuition that for upload operations, the ALL policy must

perform at leastas well as the IP policy because the ALL policy identifies redundancy within

the set of blocks visible to the IP policy as well as blocks in other parcels. In fact, Figure 5.11(a)

indicates that the ALL policy performs about twice as well asthe IP policy for small chunk sizes

and approximately 25 percent better at larger chunk sizes.

This difference shows the benefit of having a larger pool of candidate chunks when

searching for redundant data. As mentioned, one source of this gain can be the “broadcast”

of objects to many users (e.g. from software installation, patches, popular documents, big email

attachments, etc.). In systems leveraging the ALL policy, therefore, operations that might be

expected to impose a significant burden such as the distribution of security patches may result
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in very little realized cost because the new data need only bestored once and transmitted once

(across all users in the system).

5.5.2 Effect of Chunksize on Networking

The choice of chunksize will affect both the download size and upload size to a server.

We continue our discussion of upload operations first, and then discuss the appropriate chunksize

for download operations.

5.5.2.1 Effect on Upload Size

Smaller chunksize is better for CAS.Figure 5.11(a) shows very clearly that smaller

chunksizes result in more efficient upload transmission forCAS policies. In fact, under the ALL

policy, users with 4 KB chunk sizes will experience average upload sizes that are approximately

one-half the average size experienced by users with a 128 KB chunk size (whether compression

is employed or not).

Chunk sizes of 4 KB turned out to be optimal for all policies when considering the

average upload size. However, chunksize plays a very limited role for the non-CAS (Delta)

policy, and Figure 5.11(c) indicates that smaller chunk sizes may even be a liability for transfer

size outliers under the Delta policy with compression.

5.5.2.2 Effect on Download Size

Employing CAS techniques also potentially affects the volume of data transmitted during

download operations in two ways. First, CAS can identify intra-version redundancy and reduce
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the total volume of data transmission. Second, when a user requests a download of their envi-

ronment to a particular client, CAS has the potential to expose any chunks selected for download

that are identical to chunks that happen to have been cached on that client from previous sessions.

To simplify our discussion we assume that the client has cached at most one previous

version of the parcel in question, and if a cached version is present, it is the version prior to

the one requested for download. This assumption corresponds to an expected common user

telecommuting behavior. Namely, the user creates versionN−1 of a parcel at home and uploads

it to the server. The user then retrieves versionN − 1 at work, creates versionN , and uploads

that to the server. Our operation of interest is the user’s next download operation at home; upon

returning home, the user desires to download versionN and modify it. Fortunately, the user may

still have versionN − 1 cached locally, and thus, only the modified data that does notexist in

the cache need be retrieved. Note that this CAS technique canbe likened to a sub-set of the IP

policy which inspects chunks of a single user, but only for a single previous version.

Our client management system, ISR, supports two basic modesfor download:demand-

fetchandcomplete-fetch. Demand-fetch mode instantiates the user’s environment after down-

loading the minimum data needed to reconstruct the user’s environment, essentially the physical

memory image corresponding to the user’s VM (256 MB in our test deployment). In particular,

the largest portion of the VM image, the virtual disk drive, is not retrieved before instantiating

the user’s environment. During operation, missing data blocks (chunks) must be fetched on de-

mand in a manner analogous to demand-paging in a virtual memory system. The complete-fetch

mode, in contrast, requires that the entire VM image including the virtual disk image (8.25 GB

in our test deployment) be present at the client before the environment is instantiated.
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Fig. 5.12. Download size when fetching memory image of latest version.
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Caching improves demand-fetch. To evaluate the effect of client-side caching on

demand-fetch download volume, we calculated how much data would need to be transferred

from the server to a client under various conditions and collected those results in Figure 5.12.

The curve labeled “No-cache” depicts the volume of data thatwould be transmitted if no data

from the previous version of the parcel were present in the client cache. Under the “Delta” pol-

icy, the chunks in the memory image are compared with the samechunks (those at the same

offset within the image) in the previous version of the memory image to determine whether they

match. The “CAS+CacheM ” policy compares the keyring for the new memory image with the

keyring for the previous memory image to determine which chunks need to be transferred. The

“CAS+CacheM+D” policy is similar except that it searches all the data cached on the client

(memoryanddisk) to identify chunks that are already present on the client. Each basic curve in

Figure 5.12 also has a companion curve depicting the download volumes observed when com-

pression is employed during the transfer.

As shown in Figure 5.12(a), introducing a differencing mechanism (either Delta or CAS)

yields a reduction of approximately 20% (for the 128 KB chunksize) in the download size

relative to the size when no cached copy is present. Using compression alone, however, is very

effective– reducing the transfer size from 256 MB to approximately 75 MB in the absence of

caching. Leveraging cached data in addition to compressionyields a further 20% reduction.

Chunk size dramatically affects demand-fetch.Moving to a smaller chunk size can

have a significant effect on the volume of data transmitted during a download operation, par-

ticularly if compression is not used, as shown in Figure 5.12. The average download size, in

particular, is reduced by a factor of two (for Delta) to four (for “CAS+CacheM+D”) when the
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chunk size is reduced from 128 KB to 4 KB when comparing the policies either with or with-

out compression. Further, we see again that, with a 4 KB chunksize, the CAS policieswithout

compression outperform the no-cache policywith compression.

The difference between the “CAS+CacheM ” and “CAS+CacheM+D” policies is also

most apparent with a 4 KB chunk size. At this size, in the absence of compression, leveraging

the cached disk image in addition to the memory image reducesthe average transfer size to

56 MB from the 65 MB required when leveraging just the memory image. A similar gain is

observed when compression is employed; the transfer size isreduced from 23 MB (for “M”) to

18 MB (for “M+D”)– a savings of more than 20%.

However, the added benefit of inspecting additional cached data diminishes quickly as

the chunk size increases beyond 4 KB. We believe this phenomenon is due, at least in part, to the

fact that the 4 KB size corresponds to the size of both memory pages disk blocks in these VMs.

Consequently, potentially redundant data is most likely tobe exposed when chunks are aligned

to 4 KB boundaries.

Caching significantly improves complete-fetch.The need for efficient download mech-

anisms is perhaps greatest in the complete-fetch mode due tothe volume of data in question. In

this mode, the user is requesting the download of the entire VM image, the most significant

component of which is the virtual disk drive image. In our test deployment, the virtual disk drive

was a very modest 8 GB in size. One can readily imagine that users might desire virtual disk

drive spaces an order of magnitude larger. However, even with a modest size (8 GB) and a fast

network (100 Mbps), a complete-fetch download will requireat least 10 minutes. Consequently,

reducing the volume of data to be transferred by at least an order of magnitude is essential to the

operation of these client management systems.
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The basic tools are the same as those mentioned for demand-fetch mode. That is, a cache

of at least one previous version of the parcel is maintained at the client, if possible. Redun-

dancy between the cached version and the current version on the server is identified and only

non-redundant chunks are transferred during the download.Further, the transferred chunks are

(optionally) compressed prior to transmission. One difference between our treatment of demand-

fetch and complete-fetch is that the CAS policy for complete-fetch mode always compares the

entire current server version with the entire cached clientversion. Consequently, Figure 5.13

includes a single “CAS” curve rather than the separate “M” and “M+D” curves of Figure 5.12.

Figure 5.13(a) indicates that intelligent transfer mechanisms can, in fact, significantly

reduce the volume of data transmitted during a complete-fetch operation. Compression reduces

the average data volume from 8394 MB to 3310 MB, a factor of 2.7. In contrast, the Delta policy

without compression yields a factor of 9.5 and a factor of 28.6with compression, assuming

a 128 KB chunk size. At the same chunk size, CAS provides even more impressive savings:

factors of 12.6 and 29.5, without and with compression, respectively.

Small chunk sizes yield additional savings.While the slopes of the “CAS” and “CAS,gzip”

curves are not as dramatic as in previous figures, reducing the chunk size from 128 KB to 4 KB

still yields significant savings. At this chunk size, the average download size shrinks from the

nominal 8+ GB size by a factor of 31.4 without compression anda factor of 55 (fifty-five!) by

employing both CAS and compression.

CAS has a big impact where it’s needed most.Figure 5.13(c) indicates that the 4 KB

“CAS,gzip” combination may be particularly effective for download operations that may oth-

erwise have resulted in large data transfers. The performance gap between “CAS,gzip” and

“Delta,gzip” is particularly large in this graph. In fact, for small chunk sizes “CAS”without
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Fig. 5.13. Download size when fetching memoryand diskof latest version.
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compression significantly outperforms the Delta policywith compression. Note in particular

that when employing the “CAS,gzip” policy with the 4 KB chunksize, the 95th percentile up-

load sizes are not significantly larger than the average size, thus providing the user with better

expected bounds on the time required for a complete-fetch download.

5.6 Related Work

Our results are most directly applicable to VM-based clientmanagement systems such as

the Sun Microsystem’s Sun Grid Compute Utility [76], the Amazon Elastic Compute Cloud [55],

3Tera’s grid computing infrastructure [1], the Collective[27, 106], Soulpad [22], and ISR [63,

108], as well as systems that use VMs for Grid applications [29, 40, 66, 72, 121]. Further, our

results also provides guidelines for the storage design of applications that need to version VM

history. Examples include intrusion detection [38], operating systems development [60], and

debugging system configurations [138]. Related applications include storage cluster and web

services where VMs are being used for balancing load, increasing availability, and simplifying

administration [86, 137].

The study could also help a large number of systems that use use CAS to improve stor-

age and network utilization. Examples of CAS-based storagesystems include EMC’s Cen-

tera [39], Deep Store [141], the Venti [93], the Pastiche [32] backup system, the TAPER [56]

scheme for replica synchronization and Farsite [12]. Othersystems use similar CAS-based tech-

niques to eliminate duplicate data at various levels in the network stack. Systems such as the
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CASPER [130] and LBFS [80] file systems, Rhea et al.’s CAS-enabled WWW [100], etc. ap-

ply these optimizations at the application layer. Other solutions such as the DOT transfer ser-

vice [129] and Riverbed’s WAN accelerator [101] use techniques such as Rabin Fingerprint-

ing [74, 96, 114] to detect data duplication at the transfer layer. However, most of these systems

have only concentrated on the mechanism behind using CAS. Apart from Bolosky et al. [14] and

Policroniades and Pratt [90], there have been few studies that measure data commonality in real

workloads.

5.7 Chapter Summary

Managing large volumes of data is one of the major challengesinherent in developing and

maintaining enterprise client management systems based onvirtual machines. Using empirical

data collected during seven-months of a live-deployment ofone such system, we conclude that

leveraging content addressable storage (CAS) technology can significantly reduce the storage

and networking resources required by such a system (questions Q1 and Q2 from Section 3.1).

Our analysis indicates that CAS-based management policiestypically benefit from di-

viding the data into very small chunk sizes despite the associated meta-data overhead. In the

absence of compression, 4 KB chunks yielded the most efficient use of both storage and network

resources. At this chunk size, a privacy-preserving CAS policy can reduce the system storage re-

quirements by approximately 60% when compared to a block-based differencing policy (Delta),

and a savings of approximately 80% is possible by relaxing privacy.

Similarly, CAS policies that leverage data cached on clientmachines reduce the average

quantity of data that must be transmitted during both uploadand download operations. For

upload, this technique again results in a savings (comparedto Delta) of approximately 70%
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when preserving privacy and 80% when not. This technique also reduces the cost ofcomplete-

fetchdownload operations by more than 50% relative to the Delta policy (irrespective of CAS

privacy policy) and by more than an order of magnitude relative to the cost when caching is not

employed.

Leveraging compression in addition to CAS techniques provides additional resource sav-

ings, and the combination yields the highest efficiency in all cases. However, a surprising find-

ing from this work is that CAS alone yields higher efficiency for this data set than compression

alone, which is significant because the use of compression incurs a non-zero run-time cost for

these systems.

This chapter provides an insight into the benefits of CAS, when applied on real usage

data. We now present a few concluding remarks on this thesis.
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Chapter 6

Conclusions

In this thesis we have explored the design of a content addressable file system – CAPFS.

A key feature of CAPFS is incorporation of consistency/concurrency as part of the file system

design. Integral to this is the use of CAS, and the recipe based representation of a file, allowing

CAPFS to provide optimistic concurrency, thus boosting filesystem throughput. The use of CAS

based storage on data servers de-links data operations frommeta-data operations, and allows

them to proceed in parallel, thereby increasing bandwidth further. We have also evaluated few

real world application benchmarks on CAPFS, to gain insights into how CAS would perform

on real-world data. The three most impotant insights were, i) a CAS based cache performs

an outstanding job of saving network bandwidth; ii) CAS can save storage space for most live

application workloads; iii) 1 KB is a good choice for chunksize. We noted that the largest

bottleneck in a CAS based system is querying a CAS server for the presence of a chunk in its

repository. We also find that SHA1 hash generation overheadsare not significant, and are of

the order of 15%. We concluded from the Internet Suspend/Resume study, that in a real world

scenario, CAS can provide even more savings than in the case of application benchmark data. An

important conclusion was that for such workloads, CAS provides better compression thangzip.

We also noted remarkable storage space savings. Once again,the savings in network bandwidth

makes a compelling case for the use of CAS based caches.
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