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Abstract

A direct implication of both the industry and academia pagwling the Age of Tera-
(even the Peta)-scale computing, is that applications beseme morelata intensivehan ever.
The increased data volume from applications tackling laggel larger problems has fueled the
need for efficient management of this data. In this thesisswaduate a technique callébntent
Addressable Storagar CAS, for managing large volumes of data. This evaluatmru$es on
the benefits and demerits of using CAS for, i) improved agpyilin performance via lockless and
lightweight synchronization of accesses to shared stadatge ii) improved cache performance;
iii) increase in storage capacity; and, iv) increased ndtiwandwidth. We present the design of
a CAS-based file store that significantly improves the sggformance providing lightweight
and lock-less user-defined consistency semantics. As &,resu file-system shows a 28%
increase in read-bandwidth and a 13% increase in write batkwover a popular file-system
in common use. We use the same experimental file-system tgzan@AS on data from real
world application benchmarks. We also estimate the pakin¢inefits of using CAS for a virtual
machine based user mobility application, that was in actseat a public deployment for over

a period of seven months.
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Chapter 1

Introduction

The landscape of computer systems is becoming rdata intensive Scientists are
faced with mountains of data that stem from four trends, @)ftbod of data from new scientific
instruments driven by Moore’s Law, increasing their conapional capacity at an alarming rate;
(ii) the flood of data from larger and more complex simulasipfiii) the ability to economically
store huge amounts of data; and (iv) the Internet and Inteimesn applications that makes data
accessible to anyone anywhere, allowing the replicatimgton, and recreation of more content
[48]. Precedents for petabyte-scale systems already aixihta-centers for Google, Yahoo!,
and MSN Search [45]. Such systems have tens of thousandocégsing nodes and have
close to 100,000 locally attached disks to deliver the tpibandwidth. Similar data-centric
behavior exists in applications in other areas — medicatin data analysis and mining, video
processing, global climate modeling, computational ptg/sind chemistry. These applications
often manipulate data sets ranging from several megabgtésrabytes [33, 36, 89, 30]. The
computer systems required to support contemporary apiglitain everyday use in many data-
centers and computing laboratories, are commonly ardbiteas a network of workstations,
commonly known aslusters Managing the storage and movement of data on such systems,
from storage nodes (nodes housing the requisite data)e forttessing nodes, poses substantial

software challenges.
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The major challenges in efficiently managing large amouiftdata are at least four-
fold. First, the problem of storing so much data, is only tipedf the iceberg. Second is the
issue of efficiently delivering the data over the networkr laoge data, this may not be trivial —
data for even a single file could potentially be distributetbas the disks at multiple nodes (for
reasons of reliability or parallel access). The third issuthat of handling concurrent accesses
to shared data. Analyses are often performed simultangdiysh collaborating set of nodes
requiring arbitration of accesses to shared data. With tfife t® very large, scaled-out cluster
architectures, this is a very critical performance relasstdie thamustbe dealt with. The fourth
issue, closely related to the third, is that of efficient am@g caching techniques. Data needs to
be re-processed each time a new algorithm is developedchbrtigae the application is run with
different parameters.This generates even more |/O. If #te thust be moved, it makes sense to
store a copy at the destination for later reuse. Thus caahimg-use of locally available data
is the fourth challenge. To extract maximal performancea deeeds to be managed efficiently
along these dimensions. In this thesis, we evaluate a datageanent technique called Content
Addressable Storage @ASto handle these four challenges.

We observe that for three of the challenges outlined abcumety i) storage efficiency,
i) network bandwidth and iii) caching efficiency, the usemqpression-like techniques can yield
benefits. A reduction in the dataset size via data compmssahniques, would reduce the space
required to store not just the data itself, but also any ceglithus increasing the scalability of the
system. The network interconnect that ships the data frotorage node to the compute node
and vice-versa would see a corresponding increase in thpuigowing to the reduced data vol-

ume. Data caches, if used on either the storage node or theutemode, also stand to gain by
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3
being able to accommodate more data, hence increasingfdativadness of the cache. Tradi-
tional lossless compression techniques like gzip [145ksdifom at least two problems. First,
due to I/O and memory overheads, the operation is too slod/,saanond, the operation trans-
forms data from one representation to another, requiringvarse transform (de-compression)
before any use. On the other hand, specialized compressabmitjues [140] promise larger
savings, but would require customized code for every agpitia, and hence do not scale to a
system-wide solution.

An alternative technique that has gained significant pajtulan recent literature for its
potential to reduce the size of a given dataset is Contentesddble Storage @AS[80, 93, 94,
37, 130]. CAS operates on data by breaking it into small guatischunks and storing only
the identical chunks in the data, discarding any duplica®@sce the data representation itself is
not modified, no de-compression is required. Since CAS cappéied on the raw data chunks
itself, other compression techniques like gzip can be edpver and on top of CAS, if desired.
Similar to gzip-like compression, however, the performr@aont CAS depends on the workload.
A dataset wherein most of the chunks occur just once will motigde much space savings with
CAS. The choice of thehunksizeor the granularity of the data chunks is another significant
factor that affects the performance of CAS. For example Fdmsite file-system [37] indicates a
storage space savings of up to 46% when applying CAS on eefild-granularity, while other
data ([80, 114, 120]) promise much larger savings when applgZAS at a sub-file granularity.

In addition to reducing data volume via compression, CASfoather help reduce net-
work traffic in a cluster environment by exploitirg@mmonalityof data between different files.

When transferring a file between two nodes, CAS recognizeskahof data the recipient already
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has available locally in other files and avoids sending tlebsmks over the network. Such com-
monality could arise out of an older version of the file beimggent or incidental commonality
between two files. In spite of its growing popularity, detailn performance of CAS on real
world data are relatively scant in modern literature. ItHe goal of this thesis to evaluate the
pros and cons of using CAS for data emanating from real wfdieations.

On the other hand, the first and foremost concern of most gliglis performance. One
of the most critical factors affecting performance of apalions running in a cluster environ-
ment is that of handling accesses to shared data and whipéinkeeaches up-to-date. The recent
explosion in the scale of clusters, coupled with the emhasifault tolerance, has made tradi-
tional locking less suitable for cluster environments. klwster file system ([15, 109)), arbitra-
tion for shared accesses usually involves a process aequiriock from a central lock manager
on a file before proceeding with the write/read operation.tifesnumber of processes writing
to the same file increases, performance degrades rapidly ok contention. On the other
hand, fine-grained file locking schemes, such as byte-ragnig, allow multiple processes to
simultaneously write to different regions of a shared fil@mwdver, they also restrict scalability
because of the overhead associated with maintaining staaddrge number of locks, eventually
leading to performance degradation. Furthermore, any ovlyd locking system introduces a
bottleneck for data access — the lock server.

In this thesis, we make innovative use of CAS to manage comcuaccesses to shared
data. We present the design of a Content Addressable PéiddiSystem CAPFS that makes
use of CAS to providdightweight, optimisticconcurrency in a lockless manner while allowing

for client-side caching of data and meta-data. By avoidirguse of distributed locking, CAPFS
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enhances the scalability and fault-tolerance of the systhile optimistic concurrency enhances
file system throughput.

We next describe the assumptions made in this thesis, thgtmand and the terms used
in Chapter 2. Chapter 3 describes the design of CAPFS thaesnakovative use of CAS to
enhance application performance. We use the experime®BIFS platform to evaluate the
benefits and challenges in the use of CAS on data from reativeqplication benchmarks. The
results from this analysis are detailed in Chapter 4. Thidyais, however does not completely
capture the essence of a data management tool like CAS. Rorg®, a real person often runs
the same application multiple times, not just once, geimgyahe same data multiple times. To
incorporate such usage behavior in the real world, Chaptit&ils a case study that evaluates
CAS on usage data collected over a seven month period formbvimachine based user mobility
application. We believe that this application is repreativet of a growing set of applications
[55, 76, 1, 106], all of which would benefit from the use of CAShapter 6 summarizes the

conclusions of this thesis.
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Chapter 2

Background on CAS

Content Addressable Storage ©ASis based on the principle of addressing or naming
a data object in such a manner that the name is representditiiecontent. Typically this is
accomplished by running a cryptographic hash function erdtita, and using the thus generated
hash as the name of the object (BAS namg as shown in Figure 2.1. In this thesis, we use
the SHAL cryptographic hash function [87] as the basis foo@l discussions and experimental
results. The resulting CAS names (SHAL1 hashes) are of fixegth (20 bytes each).

Such a naming scheme has several advantages over using a gemexated name for
a data object. The first and most important advantage fromugieeof a cryptographic hash
function is that, a) two identical data objects will have sane name; and b) barring collisions,
two different data objects will have different CAS names. ekand property that results from
the use of this scheme ggobal naming Addressing a data object by its content-hash provides

a way to globally name a block — independent of the file, sepveny originating domain. By

A —3> Oxda2c
Crypto Hash Function

Dat a CAS nane

Fig. 2.1. CAS based naming
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Fig. 2.2. CAS based storage

removing these constraints on thamingof the data object, a CAS based data repository has
the ability to compare data objects across filename and o#maespace boundaries.

The above two properties together form the basis for theespagings obtained by the
use of CAS, as described next. CAS operates on a data ekét fiile, a raw disk partition or
even a data stream by dividing it into fixed-sideunks(we discuss variable sized chunks later).
The CAS name for the chunk is then generated. The CAS dataitepo which houses the
data chunks, indexed by their CAS names, is then searcheddqresence of the chunk being
processed. If not found, the chunk is added to the reposiBuyin case the chunk already exists
in the repository, it is not stored a second time, therebingestorage space that would have been
required for this chunk. This process is shown in Figure thhis figure, a traditional file store
uses the space required to store six chunks from two files.edernvthe CAS repository weeds
out the duplicate content, thus storing only three chung&sulting in a 50% space savings for
the data.

The file recipe: The savings achieved by CAS come at the expense of additoetal-

data. For example, in Figure 2.2, to read chunk filef2from a CAS repository, one would need
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Fig. 2.3. Effect of chunksize on commonality

to figure out the CAS name for chunk 2 (without having accessstoontents). To solve this
problem, we maintain an additional table called the rideipe that maps a file chunk-number
to its CAS name. In our experiments, we implement the recgpa #at list of the CAS names
of each chunk of a file, listed in proper sequence. Since th& Gémes are of fixed size (20
bytes), it is easy to navigate the recipe. A very importantiim note here is that the size of the
meta-data (recipe) depends on thenber of chunks in the original datand not on the chunks
in the CAS repository. As we shall see in later chapters, ¢his be a significant performance
drag on CAS.

Savings in network bandwidth: In addition to reducing data volume by detecting re-
dundancy within a file, CAS can further reduce bandwidth nespents by exploiting cross-file
similarities. CAS can take advantage of the fact that theesaehunks of data often appear in
multiple files or multiple versions of the same file. For exénpo transfer a file between two
nodes, the recipient node determines the chunks of dataeady has other files and avoids
transfer of these chunks over the network. If the recipiaenis the CAS repository, then such
cross-filecommonalityis detected by simply querying the CAS repository. If thepint is a
compute node, then the node can query it's local contenteaddble cache which could contain

data from other files, or simply an older, out of date versibthe same file.
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Commonality : CAS based savings are achieved by exploiting data comntpméthin
a single file or across different files. The presence or alssehcommonality is highly dependent
on the data being stored. Commonality in a dataset might diddntal (e.g. across unrelated
files) or due to relationships in the data (e.g. storing a mexesion of the same file in a CAS
repository). The commonality of a chunk refers to the nundddimes it occurs in the original
non-CAS data. The commonality of a dataset also dependseahtimksizeor the granularity
at which the data is broken up for application of CAS.

Chunksize : The exploitable commonality in a dataset also depends onltheksize.
For example, on reducing the chunksize to one-fourth itigioal value in Figure 2.3, CAS
can detect more commonality in the data leading to greatengs. The downside to using a
chunksize that is four times smaller, is that the meta-datahead (recipe) size goes up four
times, irrespective of how much commonality exists in thead&or datasets with not too much
commonality, use of a smaller chunksize with larger recipay outweigh any savings obtained
by the use of CAS.

Chunksize : fixed or variable ? Uptil now, the discussion has assumed that CAS is
applied on data that is partitioned into fixed sized chunks.seme workloads, this may not be
the best data chunking policy to use. For example, consideenediting a text document over
multiple sessions. Such a workload will have insertion aelétibn of data in the middle of the
file, but the content mostly stays the same across versioasa i&sult of the insert and delete
operations, the chunk boundaries of the new version mayligot perfectly with the same chunk
boundaries in the previous version. Hence, when the dathdédatest version must be uploaded
to the server (CAS repository), the fixed sized chunking sahenay not detect that most of the

content already lies on the CAS repository.
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The use of avariable sizecchunking scheme can avoid the sensitivity to shifting file of
sets. LBFS [80] uses Rabin fingerprints (hashes) to deterctmnk boundaries in a file [96].
When the low-order 13 bits of the fingerprint equal a paracudonstant value, the bytes pro-
ducing that fingerprint constitute the end of a chunk. Sihi®4cheme bases chunk boundaries
on file contents (i.e. the particular byte that causes theifip@re-determined fingerprint), in-
sertions and deletions only affect the surrounding chus.a result only a few chunks will
change, thus saving network bandwidth where a fixed-sizadkihg scheme would have failed.

Note that the variable sized chunking mechanism has a highsr- chunk boundaries
need to be calculated in addition to running a SHA1 like fiorcon the chunks themselves. The
benefits of a variable sized chunking scheme occurs in waddavith a significant number of
insert and delete operations. Additionally, such ‘inseatsl ‘deletes’ may not be visible if CAS
is applied at a disk-block level. Owing to file-system fragnation and non-contiguous file
allocation, the contents of a single file may be spread alf theedisk. Hence the insert/delete
operations may translate to new writes at free disk blockeqal between data blocks of any
arbitrary file. In this thesis, neither of these conditioiadch Our analysis of CAS on the CAPFS
platform in Chapters 3 and 4 evaluate applications that afeco-ordinated over-writes in the
middle of the file and appends at the end-of-file, with no itidetete operations in the middle
of the file. The analysis of real-world data in Chapter 5 hamnbendertaken at the disk-block
level. Hence the simpler fixed-size chunking mechanism kas lised for all our experiments.
Another argument favoring fixed chunks is that with variabieed chunks, the recipe file is
larger and parsing it is a more complex (expensive) oparatio

Use of cryptographic hashes On running a cryptographic hash function, a digest or a

hash is produced. This hash is used as the CAS name of thedadg property of cryptographic
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Fig. 2.4. SHA-1 hash collision probability using BirthdagrRdox

hash functions like SHAL that is exploited here is that thehHfanctionh is collision resistant
i.e. it must be computationally intractable to find a tudeb) such that h(a) = h(b). Of course,
sucha andb must exist, given the infinite domain and finite rangenpbut finding such a pair
should be very hard. Functions like SHA1, RIPEMD, MD5 aregiesd to withstand differential
cryptanalysis, i.e. they will map correlated inputs to umelated outputs. In the absence of an
adversary, a collision will occur due to just plain bad luckle estimate using the ‘birthday
paradox’ that the probability of an an undetectable TCHliptf118] is greater than that of a
SHA-1 hash collision, for a CAS repository housing less thdnx 260 chunks. At a small
chunksize of 128 bytes, this implies that we need to worryaraisout undetectable network
transmission errors as long as the CAS store houses les§Titgpetabytes of data. Figure 2.4
indicates the probability of a SHA-1 collision (estimatesing the birthday paradox) in terms of
the number of chunks being stored in the CAS repository.

In case of an adversary being present, one would theorgticaéd to perforrr126O op-

erations. Recently however, Wang et. al. [136] hbxakenSHA-1, by reporting that this can
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00 operations. However, such an attack is still infeasible wuthe immense

be achieved i
computational power required. For example, Grembowskakt[50] indicate that even using
specialized state-of-the-art hardware running at 33 Mhaldvtake millions of years to find a
single collision. A 4 Ghz imaginary hardware could accosiplihis in about 170,000 years. It
has hence, been argued that CAS based techniques based oh &lAtill safe [10]. Details
of properties of cryptographic hash functions can be founfll02] or briefly in [10]. We as-
sume for this thesis that SHA-1 is sufficiently safe to usd not, then we advocate the use of a

stronger digest like SHA-256. Further discussion of thEdas unfortunately beyond the scope

of this thesis.
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Chapter 3

CAPFS : Design of a Content Addressable Parallel File System

3.1 Introduction

High-bandwidth 1/0O continues to play a critical role in therformance of numerous
scientific applications that manipulate large data setgallelism in disks and servers provides
cost-effective solutions at the hardware level for enhagdiO bandwidth. However, several
components in the system software stack, particularly énfille system layer, fail to meet the
demands of applications. This is primarily due to tradedttitst parallel file system designers
need to make between performance and scalability goalseagiodh, and transparency and ease-
of-use goals at the other.

Compared to network file systems (such as NFS [104], AFS E8],Coda [61]), which
despite allowing multiple file servers still allocate allrpons of a file to a server, parallel file
systems (such as PVFS [25], GPFS [110], and Lustre [15]jillise portions of a file across
different servers. With the files typically being quite largnd different processes of the same
application sharing a file, such striping can amplify theraltdbandwidth. With multiple clients
reading and writing a file, coordination between the adégitbecomes essential to enforce a
consistent view of the file system state.

The level of sharing when viewed at a file granularity in p@tatomputing environ-
ments is much higher than that observed in network file systEn88], making consistency

more important. Enforcement of such consistency can, hewewonflict with performance and
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scalability goals. Contemporary parallel file system dedarks a consensus on which path
to take. For instance, PVFS provides high-bandwidth acte$®© servers without enforcing
overlapping-write atomicity, leaving it entirely to the@jations or run-time libraries (such as
MPI-I/O [41]) to handle such consistency requirements. ndther hand, GPFS and Lustre
enforce byte-range POSIX [115] consistency. Locking isdumeenforce serialization, which
in turn may reduce performance and scalability (more stalstrategies are used in GPFS for
fine-grained sharing, but the architecture is fundamentadksed on distributed locking).

Serialization is not an evil but a necessity for certain agpions. Instead of avoiding
consistency issues and using an external mechanism (d.ly1,[B4]) to deal with serialization
when required, incorporating consistency enforcementerdesign might reduce the overheads.
Hence the skill lies in being able to make an informed denisegarding the consistency needs
of an application. A key insight here is that applicationst the system, know best to deal with
their concurrency needs. In fact, partial attempts at sythmizations already exist — many
parallel applications partition the data space to minintzad-write and write-write sharing.
Since different applications can have different sharingavér, designing for performanand
consistency would force the design to cateatiotheir needs — simultaneously! Provisioning
a single (and strict) consistency mechanism may not onlyensakh fine-grained customization
hard but may also constrain the suitability of running dieesets of applications on the same
parallel file system.

Addressing some of these deficiencies, this chapter peentdesign and implementa-

tion of a novel parallel file system called CAPFS that prositiee following notable features:

¢ To the best of our knowledge, CAPFS is the first file system twide a tunable consistency

framework that can be customized for an application. A sgblofj-in libraries is provided
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with clearly defined entry points, to implement differenhsstency models, including POSIX,
Session, and Immutable-files. Though a user could build aeinfod each application, we
envision a set of predefined libraries that an applicationpgiek before execution for each file

and/or file system.

The data store in CAPFS is content-addressable. Conséyjuleloicks are not modified in
place, allowing more concurrency in certain situationsadiaition, content addressability can
makewrite propagation(which is needed to enforce coherence) more efficient. Fsiairce,
update-based coherence mechanisms are usually avoidadskeeof the large volume of data
that needs to be sent. In our system however, we allow updessages that are just a sequence
of (cryptographic) hashes of the new content being gergrdtarther, content addressability
can exploit commonality of content within and across filagréby lowering caching and net-

work bandwidth requirements.

Rather than locking when enforcing serialization for re@ite sharing or write-write sharing
(write atomicity), CAPFS uses optimistic concurrency cohtnechanisms [68, 79] with the
presumption that these are rare events. Avoidance ofhliséril locking enhances the scalabil-

ity and fault-tolerance of the system.

The rest of this chapter is organized as follows. The nextigeoutlines the design
issues guiding our system architecture, following which fiystem architecture and the oper-
ational details of our system are presented in Section 318.exXperimental evaluation of our
system is presented in Section 3.4 on a concurrent read/wotkload and on a parallel tiled
visualization code and for the BTIO benchmark. Section 8rérearizes related work and Sec-

tion 3.6 concludes with contributions and discusses domastfor further improvements.
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3.2 Design Issues

The guiding rails of the CAPFS design is based on the follgvgoals: 1) user should be
able to define the consistency policy at a chosen granylanity 2) implementation of consis-
tency policies should be as lightweight and concurrent asipte. The CAPFS design explores
these directions simultaneously — providing easily exgités, tunable, robust, lightweight and

scalable consistency without losing focus of the primarst @ providing high bandwidth.

3.2.1 Tunable Consistency

If performance is a criterion, consistency requirementsdioplications might be best
decided by applications themselves. Forcing an applicatiat has little or no sharing to use
a strong or strict consistency model may lead to unnecégsaduced I/O performance. Tra-
ditional techniques to provide strong file system consisteguarantees for both meta-data and
data use variants of locking techniques. In this chapteprawede tunable semantic guarantees
for file data alone

The choice of a system wide consistency policy may not be. eddyS [104] offers
poorly defined consistency guarantees that are not suitabfgarallel workloads. On the other
hand, Sprite [85] requires the central server to keep trdc@dl@oncurrent sessions and disable
caching at clients when write-sharing is detected. Suchpgnoach forcesll write-traffic to
be network bound from thereon until one or more processesedie shared file. Although
such a policy enforces correctness, it penalizes perfocmahapplications when writers update
spatially disjoint portions of the same file which is quitexaoon in parallel workloads. For

example, an application may choose to have a few temporasy(8tore locally, no consistency),
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Fig. 3.1. Design of the CAPFS parallel file system

a few files that it knows no one else will be using (no consistgna few files that will be
extensively shared (strong consistency), and a few fildsntihght have sharing in the rare case
(weaker user-defined consistency). A single consistentigypfor a cluster-based file system
cannot cater to the performance of different workloads sagthose described above.

As shown in Figure 3.1, CAPFS provides a client-side plugdichitecture to enable
users to define their own consistency policies. The useite pwhiig-ins that define what actions
should be taken before and after the client-side daemoiicesrthe corresponding system call.
(The details of the above mechanism are deferred to Sect®f)3

The choice of a plug-in architecture to implement this fiolity has several benefits.
Using this architecture, a user can define not just standardistency policies like POSIX, ses-

sion and NFS, but also custom policies, at a chosen gratyul(aub-file, file, partition-wide).
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First and foremost, the client keeps track of its files; servid not need to manage copy-sets
unless explicitly requested by client. Furthermore, antligan be using several different con-
sistency policies for different files or even changing thagistency policy for a given filat
run-time without having to recompile or restart the file system ormretree client-side daemon
(Figure 3.1). All that is needed is that a desired policy bmpited as a plug-in and be installed
in a special directory, after which the daemon is sent a sigmiandicate the availability of a
new policy. Leaving the choice of the consistency poklnd allowing the user to change it at
run-time enable tuning performance at a very fine granylaktowever, one major underlying
assumption in our system design is that we anticipate tleafilhsystem administrator sets the
same policy on all the nodes of the cluster that accessesléhgyfitem. Handling conflicting
consistency policies for the same file system or files cowdd ® incorrect execution of appli-

cations.

3.2.2 Lightweight Synchronization

Any distributed file system needs to provide a consistenoyoppl to arbitrate accesses
to data and meta-data blocks. The consistency protocolsneedxpose primitives both for
atomic read/modify/write operations and for notificatiohupdates to regions that are being
managed. The former primitive is necessary to ensure tleastéite of the system is consistent
in the presence of multiple updates, while the latter is sg&ey to incorporate client caching
and prevent stale data from being read. Traditional apjm@sase locking to address both these

issues.
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3.2.2.1 To Lock or Not to Lock?

Some parallel cluster file systems (such as Lustre [15] anBS5R10]) enforce data
consistency by using file locks to prevent simultaneous fiteeas from multiple clients. In a
networked file system, this strategy usually involves atagia lock from a central lock manager
on a file before proceeding with the write/read operation.chSa coarse-grained file locks-
based approach ensures that only one process at a time dardata to a file. As the number
of processes writing to the same file increases, performénom lock contention) degrades
rapidly. On the other hand, fine-grained file-locking schenseich as byte-range locking, allow
multiple processes to simultaneously write to differergioas of a shared file. However, they
also restrict scalability because of the overhead assatimith maintaining state for a large
number of locks, eventually leading to performance degrada Furthermore, any networked
locking system introduces a bottleneck for data accesdotkeserver.

The recent explosion in the scale of clusters, coupled vghemphasis on fault toler-
ance, has made traditional locking less suitable. GPFg[fd0instance, uses a variant of a
distributed lock manager algorithm that essentially rurtsva levels: one at a central server and
the other on every client node. For efficiency reasons, tdiean cache lock tokens on their files
until they are explicitly revoked.

Such optimizations usually have hidden costs. For examptader to handle situations
where clients terminate while holding locks, complex logicavery/release mechanisms are
used. Typically, these involve some combination of a digted crash recovery algorithm or a
lease system [49]. Timeouts guarantee that lost locks caadb&imed within a bounded time.

Any lease-based system that wishes to guarantee a sedjyertisistent execution must handle
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arace condition, where clients must finish their operatiter acquiring the lock before the lease
terminates. Additionally, the choice of the lease timesu iradeoff between performance and
reliability concerns and further exacerbates the problérel@bly implementing such a system.

The pitfalls of using locks to solve the consistency proldeim parallel file systems
motivated us to investigate different approaches to piogidhe same functionality. We use
a lockless approach for providing atomic file system dat@s®es. The approach to providing
lockless, sequentially consistent data in the presencenmfzrent conflicting accesses presented
here has roots in three other transactional systems: staditional operations in modern micro-
processors [75], optimistic concurrency algorithms iraedfatses [68], and optimistic concurrency
approach in the Amoeba distributed file service [79].

Herlihy [52] proposed a methodology for constructing Idoke and wait-free imple-
mentations for highly concurrent objects using the loa#tdd and store-conditional instructions.
Our lockless approach, similar in spirit, does not imply &isence of any synchronization prim-
itives (such as barriers) but, rather, implies #iesence of a distributed byte-range file locking
service By taking an optimistic approach to consistency, we hopgaio on concurrency and
scalability, while pinning our bets on the fact that conftigt updates (write-sharing) will be
rare [8, 31, 88]. In general, it is well understood that oftin concurrency control works best
when updates are small or when the probability of simultasegpdates to the same item is
small [79]. Consequently, we expect our approach to be ideaarallel scientific applications.
Parallel applications are likely to have each process wuitéistinct regions in a single shared
file. For these types of applications, there is no need fdditag and we would like for all writes

to proceed in parallel without the delay introduced by sutlapproach.
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3.2.2.2 Invalidates or Updates?

Given that client-side caching is a proven technique withaaent benefits for a dis-
tributed file system, a natural question that arises in timéeot of parallel file systems is whether
the cost of keeping the caches coherent outweighs the treotéiaching. However, as outlined
earlier, we believe that deciding to use caches and whethked¢p them coherent should be
the prerogative of the consistency policy and should noniggosed by the system. Thus, only
those applications that require strict policies and cadif®ence are penalized, instead of the
whole file system. A natural consequence of opting to cactiresnechanism used to syn-
chronize stale caches; that is, should consistency mesthanfior keeping caches coherent be
based on expensive update-based protocols or on cheapbdativn-based protocols or hybrid
protocols?

Although update-based protocols reduce lookup latenttieg,are not considered a suit-
able choice for workloads that exhibit a high degree of regite sharing [6]. Furthermore,
an update-based protocol is inefficient in its use of netvwaakdwidth for keeping file system
caches coherent, thus leading to a common adoption of datadn-based protocols.

As stated before, parallel workloads do not exhibit mucleckievel sharing [31] . Even
when sharing does occur, the number of consumers that Bctaall the modified data blocks
is typically low. In Figure 3.2 we compute the number of cansus that read a block between
two successive writes to the same block (we assume a bloelogit KB). Upon normalizing
against the number of times sharing occurs, we get the valo#ted in Figure 3.2. This figure
was computed from the traces of four parallel applicatidreg tvere obtained from [132]. In

other words, Figure 3.2 attempts to convey the amount ofvei#té sharing exhibited by typical
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Fig. 3.2. Read-write sharing for parallel applications.

parallel applications. It indicates that the number of consrs of a newly written block is
very small (with the exception of LU, where a newly writterotk is read by all the remaining
processes before the next write to the same block). Thuspdaterbased protocol may be
viable as long as the update mechanism does not consume tdomatwork bandwidth. This
result motivated us to consider content-addressable agyaphic hashes (such as SHA-1 [87])
for maintaining consistency because they allow for a badtwefficient update-based protocol
by transferring just the hash in place of the actual data. ¥ferdhe description of the actual

mechanism to Section 3.3.5.

3.2.2.3 Content Addressability

Content addressability provides an elegant way to summdhie contents of a file. It

provides the following advantages:
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e The contents of a file can be listed as a concatenation of siteekaof its blocks. Such a
representation was referred torasipesin a previous study [127]. This approach provides

a lightweight method of updating or invalidating sectiofigdile and so forth.

e ltincreases system concurrency, by not requiring syndhation at the content-addressable
data servers (Figure 3.1). In comparison to versioning fftesns that require a cen-
tral version/time-stamp servers [79] or a distributed pcol for obtaining unique times-
tamps [46], a content-addressable system provides aneéndept, autonomous technigue
for clients to generate new version numbers for a block. &mawly written blocks will
have new cryptographic checksums (assuming no hash oabisia content-addressable
data server also achieves the “no-overwrite” property ithassential for guaranteeing any

sort of consistency.

e Using cryptographic hashes also allows for a bandwidtltiefit update-based protocol
for maintaining cache coherence. This forms the basis foptdg a content-addressable
storage server design in place of a traditional versionirecimanism. Additionally, it
is foreseeable that the content-addressable nature ofndayalead to easy replication

schemes.

¢ Depending on the workload, content addressability migtalile to reduce network traffic
and storage demands. Blocks with the same content, if inableec(because of common-
ality of data across files or within a file) do not need to belfettor written. Only a single

instance of the common block needs to be stored, leadingatmesgavings.

As shown in Figure 3.1, the client employs two caches forqgrarhnce. The H-Cache,

or hash cache, stores all or a portion of a filedsipe[127]. A file in the CAPFS file system is
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composed of content-addressable chunks. Thus, a chunk isihof computation of crypto-
graphic hashes and is also the smallest unit of accesgibilim the CAS servers. The chunk
size is crucial because it can impact the performance offthécations. Choosing a very small
value of chunk size increases the CPU computation costseoclitints and the overheads asso-
ciated with maintaining a large recipe file, while a very Ergalue of chunk size may increase
the chances of false sharing and hence coherence traffis, Weuleave this as a tunable knob
that can be set by the plug-ins at the time of creation of a fittis a part of the file's meta-data.
For our experiments, unless otherwise mentioned, we chdséaalt chunk size of 16 KB. The
recipe holds the mapping between the chunk number and theviahge of the chunk holding
that data. Using the H-Cache provides a lightweight methHquaviding updates when sharing
occurs. An update to the hashes of a file ensures that the egxést for that chunk will fetch
the new content.

The D-Cache, or the data cache, is a content addressable. CBoh basic object stored
in the D-Cache is a chunk of data addressed by its SHA1-hdsb.\@ne can think of a D-cache
as being a local replica of the CAS server’s data store. Whegction of a file is requested by
the client, the corresponding data chunks are brought red:-Cache. Alternatively, when the
client creates new content, it is also cached locally in th€dzhe. The D-Cache serves as a
simple cache witmo consistency requirementSince the H-caches are kept coherent (whenever
the policy dictates), there is no need to keep the D-cacherent. Additionally, given a suitable
workload, it could also exploit commonality across datardtsuand possibly across temporal

runs of the same benchmark/application, thus potentialiipucing latency and network traffic.
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3.2.3 Background & Definitions

We now define a few terms that would help provide a backgroandhfe later discus-

sions.

¢ A file sessionis a series of file system calls that a process executes hegimwith the
opening of a file and ending with thel ose of the file. All file system callsr(ead,
write,truncat e etc) between thepen andcl ose for a particular file are designated

to be a part of the file's session.

e Concurrent write-sharing [85bccurs when 2 or more file sessions accesses the same file

in conflicting modes, where at-least one of them opens théofileriting.

e Any concurrent execution of a set of actions is said tesésalizableif it is equivalent
to any serial execution of the same set of actions. Eachraigitherefore the granularity
at which serializability is guaranteed also known as th&akeable unit. Typically, most
file system implementations define this unit to be a singlesfilgem call/operation, while

relational databases offer it at the granularity of a tratiea.

e The question of how accurately an execution reflects theahstrialization order was ad-
dressed in [111]. An executionlisal-time consisterif for any two conflicting operations
oplandop?2 oplprecede®p2in execution if and only ibploccurred in real time before
o0p2[111]. An example of a non real-time consistent serializeecation is as follows, if
a stale copy of a file that was last updated by a process PIcheddy a process P2, then
although P2 accesses the file later in real time than P1, R2iadized before P1 since it

does not see P1's update.
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One of the important issues that needs to be addressed whigmidg a file system is
its behavior in the presence of concurrent conflicting retgieshich is commonly referred to as

the file system semantics issue. There are four commonlytyped of file semantics namely,

e POSIX/UNIX semanticases the basic file system calls as the units of serialipalzil
mentioned briefly previously. UNIX semantics requires tingise operations also be real-
time consistent, i.e every write operation’s updates shdéa immediately visible to all
read operations that follow. Although, guaranteeing sudbtsemantics does not inhibit
performance for disk-based file systems, this can greathaohthe performance and ef-
ficiency of parallel/network file systems due to the assediaiverheads in making sure
that updates get propagated or appropriate invalidateagessare sent to every copy of
the file in the entire cluster and in applying the updates é@stiime order. These semantics
are essentially identical to treequential consistencgemantics that was formalized by
Lamport in [69] in the context of multi-processor architgets. Sprite [85] is an example

of a file system that implements UNIX semantics.

e Session Semantieequires that the beginning of a file session reflects the tepdaom
the previously closed file session. It does not guaranteeughdates from concurrently
open sessions will be visible to the newly opened sessiomsé&jently, all read/write
operations for any newly opened file session is performedllpon the cached copy. At
the end of a file session, the cached copy from the currentddsian is made visible to
subsequent sessions. The implications of such semanthet igpdates from concurrently
executing sessions could potentially be completely lossome sense, a session serves as

synchronization points at which consistency of is guaahtiat is similar to the Release
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Consistency model [44] for multi-processor architecturésS [53] is an example of a

file system that implements Session Semantics.

e Immutable FilesIn order to overcome the disadvantages stated above #hatsaociated
with session semantics, immutable file semantics propdssdtie end of an update ses-
sion would create a new version of the file and thus any oldaersf the file would still
be retained and be accessible. In many ways this is similaergioning file syster{ige
[113, 105]) with the only difference being the granularityadich the file system creates
new versions, i.e., the former (immutable files) creates wessions at the end of an up-
date session, whereas the latter (versioning file systeraajes new versions based on a

user-specified granularity (which could potentially beeaftvery update).

e Transactional Semantiagquires that file sessions be serializable, or in other witind
serializable unit is guaranteed to be a session. Thus, agudan of a file session would
be appear to be an atomic action. Each file session could ¢hasrbpared to a transaction

in a database system.

Traditionally, most distributed file systems allow clierits cache data, which in turn
introduces a potential level of file inconsistency. In thetpeesearchers have attempted to solve
this problem by, placing the burden on servers to call-bamkiaform the caches of updates, or
disallow client caching during specific periods of timesbgrplacing the burden on clients to
check the validity of their cached copies before allowingess. Information about the changed
state of the file system is disseminated by sending apptepnizalidation messages to the client

caches. Unlike in distributed shared memory systems, egakated protocols are not typically
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Fig. 3.3. System architectures: CAPFS design incorporates twoteligle caches that are absent in
PVFS.

used due to the excessive amount of data that would have tnbersthe network, and the need

to ensure that updates are seen in the same order by allsclient

3.3 System Architecture

The goal of our system is to provide a robust parallel fileeystvith good concurrency,
high throughput and tunable consistency. The design of GG\i@Bembles that of PVFS [25] in
many aspects — central meta-data server, multiple dataiseriRAID-0-style striping of data
across the 1/0O servers, and so forth . The RAID-O0 stripingesuh also enables a client to easily
calculate which data server has which data blocks of a fil¢hisection, we first take a quick
look at the PVFS architecture and its limitations from thespective of consistency semantics
and then detail our system’s design. Figure 3.3 depicts aldied diagram of the PVFS and

CAPFS system architectures.

www.manaraa.com



29

3.3.1 PVFS Architecture

The primary goal of PVFS as a parallel file system is to proviigg-speed access to file
data for parallel applications. PVFS is designed as a efienter system, as shown in Figure 3.3
(a).

PVFS uses two server components, both of which run as uselrdaemons on one or
more nodes of the cluster. One of these is a meta-data sealksd MGR) to which requests for
meta-data management (access rights, directories, fileuadts, and physical distribution of file
data) are sent. In addition, there are several instanceslatcaserver daemon (called 10D), one
on each node of the cluster whose disk is being used to stta@adpart of the PVFS name space.
There are well-defined protocol structures for exchangirfgrmation between the clients and
the servers. For instance, when a client wishes to open dtfitemmunicates with the MGR
daemon, which provides it the necessary meta-data infasm#such as the location of IOD
servers for this file, or stripe information) to do subsedugperations on the file. Subsequent
reads and writes to this file do not interact with the MGR daeraond are handled directly by
the 10D servers.

This strategy is key to achieving scalable performance uodecurrent read and write
requests from many clients and has been adopted by moret neasllel file system efforts.
However, a flip-side to this strategy is that the file systeresdoot guarantee any data con-
sistency semantics in the face of conflicting operationsessi®ns. Fundamental problems that
need to be addressed to offer sequential/ POSIX [115] styteastics are tharite atomicityand

write propagationrequirements. Since file data is striped across differedeaand since the
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data is always overwritten, the 1/0 servers cannot guaeawtde atomicity, and hence reads is-
sued by clients could contain mixed data that is disalloweB®SIX semantics. Therefore, any
application that requires sequential semantics must relgxternal tools or higher-level locking
solutions to enforce access restrictions. For instangeapplication that relies on UNIX/POSIX
semantics needs to use a distributed cluster-wide lock gearsguch as the DLM [54] infras-
tructure, so that alt ead/ wr i t e accesses acquire the appropriate file/byte-range locksebef

proceeding.

3.3.2 CAPEFS: Servers

The underlying foundation for our system is the contentraslshble storage model,
wherein file blocks araddressed and locatdshsed on the cryptographic hashes of their con-
tents. A file is logically split into fixed-size data chunksidathe hashes for these chunks are
stored in thehash server daemorThe hash server daemon, analogous to the meta-data server
(MGR) daemon of the PVFS system design, is responsible f@pimg and storing the hashes
of file blocks (termed recipes [127]) for all files. In essenitiés daemon translates the logical
block-based addressing mode to the content addressaldmeclhat is, given a logical block
i of a particular fileF, the daemon returns the hashes for that particular bloclenHBwough in
the current implementation there is a central server, watkider way to use multiple meta-data
servers to serve a file’s hashes for load-balancing purpddesughout the rest of this chapter,
we will use the term MGR server synonymously with hash seoveneta-data server to refer to

this daemon.
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Analogous to the PVFS I/O server daemon is a content-adabksserver (CAS) dae-
mon, which supports a simptget/putinterface to retrieve/store data blocks based on their-cryp
tographic hashes. However, this differs significantly biotkerms of functionality and exposed
interfaces from the 1/0 servers of PVFS. Throughout theaé#tis chapter, we will use the term

CAS server synonymously with data server to refer to thiswae

3.3.3 CAPFS: Clients

The design of the VFS glue in CAPFS is akin to the upcall/d@aiinoechanism that was
initially prototyped in the Coda [61] file system (and latelapted in many other file systems
including PVFES). In this design, file system requests olkthifom the VFS are queued in a
device file and serviced by a user-level daemon. If an errgeiserated or if the operation
completes successfully, the response is queued back iatdetfice file, and the kernel signals
the process that was waiting for completion of the operatidhe client-side code intercepts
these upcalls and funnels meta-data operations to the datdsserver. The data operations are
striped to the appropriate CAS servers. Prototype implaatiems of the VFS glue are available

at [133] for both Linux 2.4 and 2.6 kernels.

3.3.4 System Calls

The CAPFS system uses optimistic concurrency mechanismartdle write atomicity
on a central meta-data server, while striping writes in i@raver multiple content-addressable
servers (CAS servers). The system has a lockless designontigeform of locking used is
mutual-exclusion locks on the meta-data server to segidliz multiple threads (whenever nec-

essary), as opposed to distributed locking schemes (subhg54]).
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3.3.4.1 Steps for theopen and cl ose System Call

e When a client wishes to open afile, a request is sent to thedasbr to query the hashes

for the file if any.

e The server returns the list of hashes for the file (if the filsrizall). Hashes can also be
obtained on demand from the server subsequently. The sseeadds H-cache callbacks

to this node for this file if requested.

e After the hashes are obtained, the client caches them yo@adipecified by the policy) in
the H-cache to minimize server load. H-cache coherencehisad by having the server
keep track of when commits are successful, and issuingazdibto clients that may have

cached the hashes. This step is described in greater detad subsequent discussions.

e On the last close of the file, all the entries in the H-cachaH file are invalidated for
subsequent opens to reacquire, and if necessary the semetified to terminate any

callbacks for this node.

3.3.4.2 Steps for the ead System Call

e The client tries to obtain the appropriate hashes for thevesit blocks either from the
H-cache or from the hash server. An implicit agreement hetbat the server promises
to keep the client's H-cache coherent. This goal may be aellidy using either an
update-based mechanism or an invalidation-based meahat@pending on the number
of sharers. Note that the update callbacks contain merel\h#shes and not the actual

data.
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e Using these hashes, it tries to locate the blocks in the Decad\ote that keeping the
H-cache coherent is enough to guarantee sequential cmsysinothing needs to be done

for the D-cache because it is content addressable.

e If the D-cache has the requested blocks, the read returnshangrocess continues. On
a miss, the client issuesget request to the appropriate CAS servers, which is cached
subsequently. Consequently, reads in our system do n&rsff slowdowns and should

be able to exploit the available bandwidth to the CAS serbgraccessing data in parallel.

3.3.4.3 Steps for thew i t e System Call

Writes from clients need to be handled a little differentbchuse consistency guarantees
may have to be met (depending on the policy). Since writeagddhe contents of the block,
the cryptographic hashes for the block changes, and heixésth new block in the system
altogether. We emphasize that we need mechanisms to ensteeat@micity not only across
blocks but also across copies that may be cached on theetliffapdes. On a write to a block,

the client does the following sequence of steps,

e Hashes for all the relevant blocks are obtained either frioenH-cache or from the hash

server.

e If the write spans an entire block, then the new hash can beutad locally by the client.
Otherwise, it must read the block and compute the new hasidlmasthe block’s locally

modified contents.

e After the old and new hashes for all relevant blocks are fedcbr computed, the client

does arpptimistic putof the new blocks to the CAS servers, which store the new Islock
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Note that by virtue of using content-addressable stordigeservers do not overwrite older
blocks. This is an example of an optimistic update, becawsasgume that the majority

of writes will be race-free and uncontested.

¢ If the policy requires that the writer's updates be made idiaely visible, the next step
is thecommitoperation. Depending on the policy, the client informs tae/er whether
the commit should be forced or whether it can fail. Upon a essful commit, the return

values are propagated back.

¢ A failed commit raises the possibility @ffphanedblocks that have been stored in the 1/0
servers but are not part of any file. Consequently, we needtekited cleaner process
that is invoked when necessary to remove blocks that do fohgedo any file. We refer

readers to [133] for a detailed description of the cleanetqmol.

3.3.4.4 Commit Step

¢ Inthe commit step, the client contacts the hash server Wihist of blocks that have been
updated, the set of old hashes, and the set of new hashes. nexhsection, we illustrate
the need for sending the old hashes, but in short they are fosettecting concurrent

write-sharing scenarios similar to store-conditional ragiens [75].

e The meta-data server atomically compares the set of oldelsabiat it maintains with the
set of old hashes provided by the client. In the uncontestse,all these hashes would
match, and hence the commit is deemed race free and sudceShfihash server can
now update its recipe list with the new hashes. In the rare oha concurrent conflicting

updates, the server detects a mismatch in the old hashese@for one or more of the
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client's commits and asks them to retry the entire operatibmwever, clients can override

this by requesting the server to force the commit despitdlicts

¢ Although such a mechanism has guaranteed write-atomicitysa blocks, we still need to
provide mechanisms to ensure that client’s caches are ptiated or invalidated to guar-
antee write atomicity across all copies of blocks that maydogiired by the consistency
policy (sequential consistency/UNIX semantics requirs)ttsince the server keeps track
of clients that may have cached file hashes, a successful t@ism entails updating or

invalidating any client's H-cache with the latest hashes.

e Our system guarantees that updates to all locations are wisike in the same order to
all clients (this mechanism is not exposed to the policig}. yéherefore, care must be
exercised in the previous step to ensure that updates thegits H-caches are atomic. In
other words, if multiple clients may have cached the hasbea particular chunk and if
the hash-server decides to update the hashes for the sanie tteiupdate-based protocol
must use a two-phase commit protocol (such as those useldiional databases), so that
all clients see the updates in the same order. This is notedeiedan invalidation-based
protocol however. Hence, we use an invalidation-basedpaobtin the cases of multiple

readers/writers and an update-based protocol for singléerdwriter scenarios.

3.3.5 Conflict Resolution

Figure 3.4 depicts a possible sequence of actions and neessdag are exchanged in the
case of multiple-readers and a single-writer client to thme file. We do not show the steps

involved in opening the file and caching the hashes. In stepelwriter optimistically writes
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to the CAS servers after computing the hashes locally. Siepite request for committing the
write sent to the hash server. Step 3 is an example of thddiatein-based protocol that is used
in the multiple reader scenario from the point of view of eatness as well as performance.
Our system resorts to an update-based protocol in the sshgleer case. Sequential consistency
requires that any update-based protocol has to be two-gHasensuring the write-ordering
requirements, and hence we opted to dynamically switchitayusvalidation-based protocol in
this scenario to alleviate performance concerns. Stepsl Batepict the case where the readers
look up the hashes and the local cache. Since the hashestmindalidated by the writer, this
step may also incur an additional network transaction hféte latest hashes for the appropriate
blocks. After the hashes are fetched, the reader looks Updéd data cache or sends requests
to the appropriate data servers to fetch the data blockpsS&tend 6 are shown in dotted lines
to indicate the possibility that a network transaction maylme necessary if the requested hash
and data are cached locally (which happens if bothrthad’s occurred before theri t e in
the total ordering).

Figure 3.5 depicts a possible sequence of actions and nesstfad are exchanged in the
case of multiple-readers and multiple-writers to the sahee #\s before, we do not show the
steps involved in opening the file and caching the hashesejnls writer client Il optimistically
writes to the CAS servers after computing hashes locallgtép 2, writer client | does the same
after computing hashes locally. Both these writers haveastlone overlapping byte in the file
to which they are writing tfue-sharing or are updating different portions of the same chunk
(false-sharing. In other words this is an instance of concurrent-writersttga Since neither
writer is aware of the other’s updates, one of them is askadtty. The hash server acts as a

serializing agent. Since it processes requests from diidrgtfore client |, the write from client
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Il'is successfully committed, and step 3 shows the invabdamessages sent to the reader and
the writer client. Step 4 is the acknowledgment for the sesfté write commit. Step 5 is shown
dashed to indicate that the hash server requests writert ¢lie retry its operation. The write
done by this client in step 2 is shown dotted to indicate thistd¢reated orphaned blocks on the
data server and needs to be cleaned. After receiving a regty the hash server that the write
needs to be retried, the writer client | obtains the lateshka or data blocks to recompute its
hashes and reissues the write as shown in step 6.

In summary, our system provides mechanisms to achievdigabgity that can be used
by the consistency policies if they desire. In our systeead-write serializabilityand write
atomicity across copieare achieved by having the server update or invalidate ileatd H-
cache when a write successfully commi¥rite-write serializability across blockis achieved
by having the clients send in the older hash values at thedirttee commit to detect concurrent
write-sharing and having one or more of the writers to résiaredo the entire operation.

We emphasize here that, sinckent state is mostly eliminatedhere is no need for a
complicated recovery process or lease-based timeoutsatbatn inherent part of distributed
locking-based approaches. Thus, our proposed schemesieimtty more robust and fault toler-
ant from this perspective when H-caches are disabled. lathes are enabled however, tempo-
rary failures such as network disconnects can cause clem&ad/write stale data. Further, the
centralized meta-data server with no built-in support &plication is still a deterrent from the
point of view of fault-tolerance and availability. We hopeaddress both these issues as future

extensions.
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struct plugin_policy_ops {

handl e (*pre_open) (force_commit, use_hcache,
hcache_coherence, delay_comit, num hashes);

nt (*post_open) (void rhandl e);

nt (x*pre_close)(void rhandl e);

i

i

int (*post_close)(void xhandle);

int (xpre_read)(void rhandl e, size, offset);
int (*xpost_read)(void *handle, size, offset);
int (rpre_wite)(void *handle, size, offset,

int xdelay_wc);
(*post_write)(void *handl e,
sha_hashes *new);
(*pre_sync) (const char =*);
(*post _sync) (voi d *handl e);

i nt shal hashes +ol d,
i nt
i nt

H

Client-Side Plug-in API

i nt hcache_get (void *handl e, begi n_chunk, nchunks
voi d =buf);

i nt hcache_put (void *handl e, begi n_chunk, nchunks
const void *buf);

i nt hcache_cl ear(void *handl e);

i nt hcache_cl ear_range(void *handl e, begi n_chunk
nchunks) ;

voi d hcache_inval i date(voi d);

i nt dcache_get (char *hash, void xbuf, size);

i nt dcache_put (char *hash, const void *buf,
int commt(void rhandl e, shal _hashes =*ol d_hashes,
shal hashes *new _hashes,
shal_hashes xcurrent _hashes);

CAPFS Client-Daemon: Core API

si ze);

Fig. 3.6. The client-side plug-in APl and the CAPFS clieaeohon core API. On receiving a system call, the CAPFS ctiastmon calls

the corresponding user-defined pre- and post- functiosperively, before servicing the system call.
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3.3.6 Client-side Plug-in Architecture

The CAPFS design incorporates a client-side plug-in aechite that allows users to
specify their own consistency policy to fine tune their apgtion’s performance. Figure 3.6
shows the hooks exported by the client-side and what cdtbaglug-in can register with the
client-side daemon. Each plug-in is also associated witbhrgque” name and identifier. The
plug-in policy’'s name is used as a command-line option torttmint utility to indicate the
desired consistency policy. The CAPFS client-side daemadd default values based on the
command-line specified policy name at mount time. The us&eesto define any of the call-
backs in the plug-ins (setting the remainder to NULL), anddeechoosing the best trade-off
between throughput and consistency for the applicatione fdlag-in APl/callbacks to be de-
fined by the user provide a flexible and extensible way of dafira large range of (possibly
non-standard) consistency policies. Additionally, otbptimizations such as pre-fetching of
data or hashes, delayed commits, periodic commits(e.mpabafter “t” units of time, or com-
mit after every “n” requests), and others can be accommddatehe set of callbacks shown in
Figure 3.6). For standard cases, we envision that the ciifae used as follows.

Setting Parameters at Open:On mounting the CAPFS file system, the client-side dae-
mon loads default values foior ce_conmi t ,use_hcache,hcache_coher ence,del ay_comi t,
andnumhashes parameters. However, these values can be overridden onfdepkasis as
well by providing a non-NULLpr e_open callback. Section 3.3.4.4 indicates that in a commit
operation, a client tells the server what it thinks the oldhes for the data are and then asks
the server to replace them with new, locally calculated bastience a commit operation fails

if the old hashes supplied by the client do not match the onaemtly on the server (because
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of intervening commits by other clients). On setting fher ce_commi t parameter, the client
forces the server into accepting the locally computed hastverwriting whatever hashes the
server currently has. These_hcache parameter indicates whether the policy desires to use
the H-Cache. Théacache_coher ence parameter is a flag that indicates to the server the
need for maintaining a coherent H-cache on all the clierd$ thay have stale entries. The
del ay _commi t indicates whether the commits due to writes should be ddl&lyeffered) at

the client. Thenumhashes parameter specifies how many hashes to fetch from the meda-da
server at a time. These parameters can be changed by theyudssfirbng apr e _open callback

in the plug-in (Figure 3.6). This function returns a handidich is cached by the client and is
used as an identifier for the file. This handle is passed bathetaser plug-in irpost _open

and other subsequent callbacks until the last referendeetéle is closed. For instance, a plug-
in implementing an AFS session like semantics [53] wouldHetll hashes at the time of open,
delay the commits till the time of al ose, set thef orce_comi t flag and commit all the
hashes of a file at the end of the session.

Prefetching and Caching: Prior to a read, the client daemon invokes fitee_r ead
callback (if registered). We envision that the user migttigeto check H-Cache and D-Cache
and fill them using the appropriate hcaopet/dcachgyet API (Figure 3.6) exported by the client
daemon. This callback might also be used to implement tafeg data, hashes, and the like.

Delayed commits: A user might overload ther e_wri t e callback routine to imple-
ment delayed commits over specific byte ranges. One poss#jeof doing this is to have the
pre_wr it e callback routine set a timer (in case a policy wishes to canewery “t” units of
time) that would invoke th@ost _.wr i t e on expiration. But for the momenpre_w it e re-

turns a value fodel ay _wc (Figure 3.6) to indicate to the core daemon that the write roitm
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need to be delayed or committed immediately. Hence, onngettiggered, thgpost write
checks for pending commits and then initiates them by aalfie appropriate core daemon API
(conmi t). Thepost .wite could also handle operations such as flushing or clearing the
caches.

Summary: The callbacks provide enough flexibility to let the user cdwworhen and how
to implement most known optimizations (delayed writesfgtahing, caching, etc.) in addition
to specifying any customized consistency policies. By ipgss the offsets and sizes of the
operations to the callback functions suclpa® _r ead, pre_wr it e, plug-in writers can also
use more specialized policies at a very fine granularity {sag optimizations making use of
MPI derived data-types [41]). This description detailst jose possible way of doing things.
Users can use the API in a way that suits their workload, dridatk on standard predefined
policies. Note that guaranteeing correctness of execugitme prerogative of the plug-in writer.
Implementation of a few standard policies (Sequential, SIESI-like, NFS-like) and others
(Table 3.8 in Section 3.4) indicate that this step does ramtephn undue burden on the user. The
above plug-ins were implemented in less than 150 lines ofdg.co

One must also note, that in this scenario all clients areperaiive and mount the same
file-system with same parameters. In case the same file @yfiieem is mounted (or opened)
with different parameters at different clients, resultsanf/ ensuing operations could be unpre-

dictable.

3.4 Experimental Results

Our experimental evaluation of CAPFS was carried out on av [Eeries cluster. with

the following configuration. There are 20 compute nodes e&ethich is a dual hyper-threaded
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Fig. 3.7. Myrinet (a) Point-to-point latency ipsec (b) Bisection bandwidth in MB/s

Xeon clocked at 2.8 GHz, equipped with 1.5 GB of RAM, a 36 GB BdiSk and a 32-bit
Myrinet card (LANai9.0 clocked at 134 MHz). The nodes run Radd.0 with Linux 2.4.20-8
kernel compiled for SMP use and GM 1.6.5 used to drive the Myrcards. Our 1/O configu-
ration includes 16 CAS servers with one server doubling dls baneta-data server and a CAS
server. All newly created files are striped with a stripe ©£46 KB and use the entire set of
servers to store the file data. A modified version of MPICH@& distributed by Myricom for

GM was used in our experimental evaluations.

3.4.1 Network Performance

We first evaluate the network performance of the clustersydiyg thempptesiprogram
supplied by the MPICH distribution. This test evaluatesgbmt-to-point message latencies and
bisection bandwidth for varying message sizes and thetseard shown in Figures 3.7 (a) and

(b). The bisection bandwidth serves as a useful yardstidomopare the aggregate bandwidths
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that our system achieves (the bisection bandwidth was ctedmver the same 16 node subset
that house the CAS servers). We find that our cluster’s b@edtandwidth peaks around 630
MB/s for a message size of 1 MB, and the point-to-point laenéor a message size of 4 KB
is around 90 microseconds. The command line used for megsthe bisection bandwidth is

shown below,

npi run -np <np> -machi nefil e <machinefil enanme> \

.l exampl es/ perftest/npptest -bisect -1ogscale

3.4.2 Aggregate Bandwidth Tests

Since the primary focus of parallel file systems is aggretfat@ughput, our first work-
load is a parallel MPI programyfstest.cfrom the PVFS distribution), that determines the ag-
gregate read/write bandwidths and verifies correctnesiefrin. The block sizes, iteration
counts, and number of clients are varied in different runsngequently, this workload demon-
strates concurrent-write sharing and sequential-writgis patterns, albeit not simultaneously.
Times for the read/write operations on each node are redayder ten iterations and the maxi-
mum averaged time over all the tasks is used to compute thombdin achieved. The graphs for
the above workload plot the aggregate bandwidth (in MB/shheny-axis against the total data
transferred to or from the file system (measured in MB). Thal tdata transferred is the product
of the number of clients, block size and the number of itersi

We compare the performance of CAPFS against a representadrallel file system —

PVFES (Version 1.6.4). To evaluate the flexibility and fin@iged performance tuning made
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possible by CAPFS’ plug-in infrastructure, we divide oupermental evaluation of into cate-
gories summarized in Table 3.8. Five simple plug-ins haenlmplemented to demonstrate the
performance spectrum.

The values of the parameters in Table 3.8ferde.commit, hcacheoherenceindusehcaché
dictate the consistency policies of the file system. fidiee commitparameter indicates to the
meta-data server that the commit operation needs to bedait without checking for conflicts
and being asked to retry. Consequently, this parameteieimfies write performance. Likewise,
thehcachecoherencegarameter indicates to the meta-data server that a comemiatipn needs
to be carried out in strict accordance with the H-cache e protocol. Since the commit
operation is not deemed complete until the H-cache coherpnatocol finishes, any consis-
tency policy that relaxes this requirement is also goinghimnsperformance improvements for
writes. Note that neither of these two parameters is exgdctdave any significant effect on
the read performance of this workload. On the other hanaiguie H-cache on the client-side
(usehcacheparameter) has the potential to improving the read perfonadecause the number

of RPC calls required to reach the data is effectively halved

Policy Use Force Hcache
Name | Hcache| Commit| Coherence
SEQ-1 0 0 X
SEQ-2 1 0 1
FOR-1 0 1 X
FOR-2 1 1 1

| REL-1 | 1 ] 1 | 0 |

Fig. 3.8. Design space constituting a sample set of consistencyigslliSEQ-1, SEQ-2 implement se-
guential consistency; FOR-1, FOR-2 implement a slightlspeed mechanism where commits are forced,;
REL-1 implements an even more relaxed mechanism. The X is foand 3 denotes a don't care for the
variable’s value.
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The first two rows of Table 3.8 illustrate two possible waysmplementing a sequen-
tially consistent file system. The first approach denotede3-%, does not use the H-cache (and
therefore H-caches need not be kept coherent) and doesroetdommits. The second approach
denoted as SEQ-2, uses the H-cache, does not force commuite@uires that H-caches be kept
coherent. Both approaches implement a sequentially densifle system image and are ex-
pected to have different performance ramifications depgndi the workload and the degree of
sharing.

The third and fourth rows of Table 3.8 illustrate a slightBlaxed consistency policy
where the commits are forced by clients instead of retryingonflicts. The approach denoted
as FOR-1, does not use the H-cache (no coherence required)approach denoted as FOR-2,
uses the H-cache and requires that they be kept coherentcddnenvisage that such policies
could be used in mixed-mode-environments where files arsilpigsaccessed or modified by
non-overlapping MPI jobs as well as unrelated processes.

The fifth row of Table 3.8 illustrates an even more relaxedsisirncy policy denoted as
REL-1, that forces commits, uses the H-cache, and does gotrecthat the H-caches be kept
coherent. Such a policy is expected to be used in envirorswemre files are assumed to be non-
shared among unrelated process or MPI-based applicatioimssgenarios where consistency
is not desired. Note that it is the prerogative of the apgiliceawriter or plug-in developers
to determine whether the usage of a consistency policy weigldte the correctness of the
application’s execution.

Read Bandwidth: In the case of the aggregate read bandwidth results (Figug€a)
and 3.9(b)), the policies using the H-cache (SEQ-2, FOREL,-R) start to perform better in

comparison to both PVFS and policies not using the H-cacE€)($, FOR-1). This tipping
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point occurs when the amount of data being transferred iy fiairge (around 3 GB). This is
intuitively correct, because the larger the file, the gnetiie number of hashes that need to be
obtained from the meta-data server. This requirement iegpashigher load on the server and
leads to degraded performance for the uncached case. Tihpedsba in the read bandwidth for
the H-cache based policies (beyond 4 GB) is an implementatitifact caused by capping the
maximum number of hashes that can be stored for a particidanfihe H-cache.

On the other hand, reading a small file requires proporteipeewer hashes to be re-
trieved from the server, as well as fewer RPC call invocatitaretrieve the entire set of hashes.
In this scenario, the overhead of indexing and retrievinghlea from the H-cache is greater than
the time it takes to fetch all the hashes from the server inghwd. This is responsible for the
poor performance of the H-cache based policies for smalkersizes. In fact, a consistency
policy that utilizes the H-cache allows us to achieve a pegenate read bandwidth of about
450 MB/s with 16 clients. This is almost a 55% increase in pgegdregate read bandwidth in
comparison to PVFS which achieves a peak aggregate reaaviaihaf about 290 MB/s. For
smaller numbers of clients, even the policies that do notemae of the H-cache perform better
than PVFS.

In summary, for medium to large file transfers, from an aggtegead bandwidth per-
spective, consistency policies using the H-cache (SE@R-R, REL-1) outperform both PVFS
and consistency policies that do not use the H-cache (SEDR;1).

Write Bandwidth: As explained in Section 3.3.3, write bandwidths on our syséee
expected to be lower than read bandwidths and these can 8ityrearroborated from Fig-
ures 3.9(c) and 3.9(d). We also see that PVFS performs hibtarall of our consistency poli-

cies for smaller data transfers (upto around 2 GB). At arathed1.5-2 GB size range, PVFS
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experiences a sharp drop in the write bandwidth becauseatiaestarts to be written out to disk
on the 1/O servers that are equipped with 1.5 GB physical nmgnm®n the other hand no such
drop is seen for CAPFS. The benchmark writes data initidlipea repeated sequence of known
patterns. We surmise that CAPFS exploits this commonatitthe data blocks, causing the
content-addressable CAS servers to utilize the availdiysipal memory more efficiently with
fewer writes to the disk itself.

At larger values of data transfers (greater than 2 GB), thexegl consistency policies
that use the H-cache (REL-1, FOR-2) outperform both PVFSa@ather consistency policies
(SEQ-1, SEQ-2, FOR-1). This result is to be expected, becthgsrelaxed consistency seman-
tics avoid the expenses associated with having to retry dsron a conflict and the H-cache
coherence protocol. Note that the REL-1 scheme outperftmmn&OR-2 scheme as well, since
it does not perform even the H-cache coherence protocohdtbie REL-1 scheme, we obtain a
peak write bandwidth of about 320 MB/s with 16 clients, whiglabout a 12% increase in peak
aggregate write bandwidth in comparison to that of PVFScivlichieves a peak aggregate write
bandwidth of about 280 MB/s.

These experiments confirm that performance is directly énfbed by the choice of con-
sistency policies. Choosing an overly strict consistenaljcp such as SEQ-1 for a workload
that does not require sequential consistency impairs tieilple performance benefits. For ex-
ample, the write bandwidth obtained with SEQ-1 decreasedshwpuch as 50% in comparison
to REL-1. We also notice that read bandwidth can be improwethtéorporating a client-side
H-cache. For example, the read bandwidth obtained with S3EEOR-2) increased by as much
as 80% in comparison to SEQ-1 (FOR-1). However, this doexomie for free, because the

policy may require that the H-caches be kept coherent. Ttrereusing a client-side H-cache
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may have a detrimental effect on the write bandwidth. Allleéde performance ramifications
have to be carefully addressed by the application desigmatplug-in writers before selecting
a consistency policy.

We now turn our attention to the performance of two well-stiwed, parallel scientific
applications on our file system to measure the performanpadtrof consistency policies. The
first application is a tiled visualization code obtainednfr§@5] that simulates the 1/O access
patterns of parallel visualization tools. and the secomiliegtion is the NAS BTIO [7] (Version
2.4) benchmark from NASA Ames Research Center. that simsildte 1/0 access patterns of a

time-stepping flow solver that periodically dumps its smaotmatrix.

3.4.3 Tiled I/O Benchmark

Tiled visualization codes are used to study the effectigsrd today’s commodity-based
graphics systems in creating parallel and distributed alization tools. In this experiment,
we use a version of the tiled visualization code [95] thatsuseiltiple compute nodes, where
each compute node takes high-resolution display framegeads only the visualization data
necessary for its own display.

We use nine compute nodes for our testing, which mimics thplay size of the visu-
alization application. The nine compute nodes are arramgéde 3 x 3 display as shown in
Figure 3.10, each with a resolution of 1024 x 768 pixels widhb color. In order to hide the
merging of display edges, there is a 270-pixel horizont&riayp and a 128-pixel vertical over-
lap. Each frame has a file size of about 118 MB, and our expetimeet up to manipulate a set

of 5 frames, for a total of about 600 MB.
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Tile Reader File Access Pattern

P Tilel Tile 2 Tile3 1

Lo -

------ L

i Tiled P Tile 5 b Tile6

e e -
768
Pixeld  Tile7 Tile 8 Tile9
S S S I R '

1024 Pixels

Actual Display Area
------------- Tile Display Area

Fig. 3.10. Tile reader file access pattern: Each processalsrdata from a display file onto
local display (also known as a tile).

This application can be set up to run both in collective 1/0de@41], wherein all the
tasks of the application perform 1/O collectively, and innAcollective 1/0O mode. Collective
I/O refers to an MPI I/O optimization technique that enaldash processor to do 1/O on behalf
of other processors if doing so improves the overall pertoroe. The premise upon which
collective I/0 is based is that it is better to make large esggito the file system and cheaper to
exchange data over the network than to transfer it over thédi/ses. Once again, we compare
CAPFS against PVFS for the policies described earlier in€rat8. All of our results are the

average of five runs. A sample command line is,

npirun -np 9 -nmachinefile enp ./nmpi-tile-io-gm--nr_tiles x 3
--nr_tiles .y 3 --sz tile_x 1024 --sz tile_y 768 --sz_elenment 24

--overlap_x 270 --overlap_y 128 --fil enane foo
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Fig. 3.11. Tile I/O benchmark bandwidth in MB/s: (a) non-collectivade (b) non-collective write, (c)
collective read, (d) collective write.
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Read Bandwidth: The aggregate read bandwidth plots (Figures 3.11(a) arfdc)1
indicate that CAPFS outperforms PVFS for both the non-ctille and the collective I/O sce-
narios, across all the consistency policies. Note thatdhd phase of this application can benefit
only if the policies use the H-caches (if available). As we $a our previous bandwidth ex-
periments, benefits of using the H-cache start to show up fonliarger file sizes. Therefore,
read bandwidths for policies that use the H-cache are noifigntly different from those that
don't in this application. Using our system, we achieve aimaxn aggregate read bandwidth
of about 90 MB/s without collective 1/0 and about 120 MB/siwibllective I/O. These results
translate to a performance improvement of 28% over PVFShaadwidth for the noncollective
scenario and 20% over PVFS read bandwidth for the collestemario.

Write Bandwidth: The aggregate write bandwidths paint a different picturer. on-
collective 1/O, Figure 3.11 (b), the write bandwidth is véow for two of our policies (SEQ-2,
FOR-2). The reason is that both these policies use an H-cactiealso require that the H-
caches be kept coherent. Also, the non-collective I/O warsif this program makes a number
of small write requests. Consequently, the number of H-eadherence messages (invalidates)
also increases, which in turn increases the time it takesh®mwrites to commit at the server.
One must also bear in mind that commits to a file are serialigethe meta-data server and
could end up penalizing other writers that are trying to &stmultaneously to the same file.
Note that the REL-1 policy does not lose out on write perfarogadespite using the H-cache,
since commits to the file do not execute the expensive H-caaierence protocol. In summary,
this result indicates that if a parallel workload performe@of small updates to a shared file,
then any consistency policy that requires H-caches to bedaerent is not appropriate from a

performance perspective.
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Figure 3.11(d) plots the write bandwidth for the collecti¥@ scenario. As stated earlier,
since the collective 1/0O optimization makes large, wellistured requests to the file system,
all the consistency policies (including the ones that negabherent H-caches) show a marked
improvement in write bandwidth. Using our system, we achiaumaximum aggregate write
bandwidth of about 35 MB/s without collective I/O and abo@0IMB/s with collective I/O.
These results translate to a performance improvement aft&@% over PVFS write bandwidth
for the non-collective scenario and about 13% improvemeat BVFS write bandwidth for the

collective scenario.

3.4.4 NAS BTIO Benchmark

The BTIO benchmark (Version 2.4) [7] from NASA Ames Resea@#nter simulates
the 1/0 required by a time-stepping flow solver that periatlicwrites its solution matrix. The
solution matrix is distributed among processes by using Hi4partition distribution in which
each process is responsible for several disjoint sub-blafkpoints (cells) of the grid. The
solution matrix is stored on each process as C three-dimeaisarrays, where C is the number
of cells on each process (the arrays are actually four diroeak but the first dimension has
only five elements and is not distributed). Data is storedhinfile in an order corresponding to
a column-major ordering of the global solution matrix.

The access pattern in BTIO is non-contiguous in memory afitkiand is therefore diffi-
cult to handle efficiently with the UNIX/POSIX I/O interfac@herefore, we used the “full MPI-
10" version of this benchmark, which uses MPI derived dgfaes to describe non-contiguity
in memory and file and also uses a single collective 1/O fumcto perform the entire 1/0. We

ran the Class A problem size, which uses a 64x64x64 elemexyt aiith a total size of 400 MB
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and tests were run using 4, 9, and 16 compute nodes (the barichequires that the number of

compute nodes be a perfect square).
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250

200

1501

1001

Wall-clock Execution Time (seconds)
a
o

9
Number of clients

Fig. 3.12. Execution time for the NAS BTIO benchmark.

Figure 3.12 shows the wall-clock time for execution of thembhmark for the different
file system configurations and number of compute nodes. Weerthiat as the number of clients
increases, the overall execution time decreases for betfiléhsystems. Further, we also see that
all our consistency policies perform almost as well as PVHB minimal overheads. With REL-

1 which is the most relaxed policy in our system, the exeautiime of the application is about
10% slower than that of PVFS for 16 processors, and with SE@ith is the most strict policy
in our system, the execution time of the application is al20%6 slower than that of PVFS for

16 processors. For this workload, the performance benefitsuging a relaxed policy (such as
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REL-1) over a stringent policy (such as SEQ-1) is higher femeller number of clients than for
a larger number of clients indicating that this workload temefit with an even more relaxed

policy (such as a delayed commit policy) for a larger numbelients.

3.5 Related Work

Many efforts have sought to solve the consistency problethércontext of distributed
file systems. Fundamentally, any approach to providing asistency needs to address two
issues: write atomicity/serialization (ensuring thattesiappear atomic and are seen in the same
order by all clients, especially in a system with multipleoms of data and across blocks that
may span nodes) and write propagation issues (ensure thas\are visible to other processes).
Therefore, we discuss past efforts to solve this problenedas these two categories.

Distributed file systems such as AFS [53], NFS [104] and 8p&it 85] have only a single
server that doubles in functionality as a meta-data and siatger. Because of the centralized
nature of the servers, write atomicity is fairly easy to iempent. Client-side caches still need
to be kept consistent however, and it is with respect to #Esé (write propagation) that these
approaches differ from the CAPFS architecture. The Spig&iduted file system [85] uses
a stateful server approach that keeps track of concurremgn sessions of every file in the
system. Sessions that have opened the file in read mode armad by means of a callback
from the server that their caches are stale in case the fildbéas written to by some other
client. If the server detects that there are concurrentevg@ssions, then it informs the relevant
clients to write-through, effectively disabling the cadbethe entire period of the operation. The
venerable Network File System [104] implements a mostltetgas server, and hence the onus

is on the client to periodically ensure that state of thegheais correct. AFS [53] implements
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write-on-closesemantics (a variant of the session semantics discussiesh)eavhere the server
keeps track of clients caching a file, and when the files argeddhe changes are written back
to the server, which then notifies any other clients that mayetcached the file. Coda [61], a
descendant of AFS also uses callbacks which is basicallyagagtee provided by the servers
that clients would be notified when their cached copies arnger valid. Coda differs from
AFS in that it allows for server replication, that allows woles to have read-write replicas at
more than one server which is referred to as the volume stogemup. Since, there are multiple
servers, the write atomicity problem is solved by having ifications propagated in parallel to
all available volume storage groups, and eventually toghbat missed the updates. However,
with the exception of Sprite, none of the other file systenfera sequentially consistent file
system image for the sake of performance and due to the eliffelomains of deployment.
Since the beginning of distributed computing, there havenbeany efforts to build dis-
tributed file-servers all of which support mechanisms fanagrency control. Many of the ear-
liest distributed file servers use variants of locks for agnency control such as XDFS [119],
Felix [42] and Alpine [20], while some such as SWALLOW [12F]Qse timestamps. Paral-
lel file systems such as GPFS [110] and Lustre [15] employibliged locking to synchronize
parallel read-write disk accesses from multiple client e®do its shared disks. The locking
protocols are designed to allow maximum throughput, paliaih, and scalability, while simul-
taneously guaranteeing that file system consistency istaiagd. Every file system operation
acquires an appropriate read/write lock to synchronizé adnflicting operations. In addition to
a centralized lock manager, each node in the cluster alsoadmcal lock manager. The global,
centralized lock manager coordinates locks between locéllinanagers by handing out tokens,

which can be revoked at a later point on a conflicting accedshodgh such algorithms can
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be highly tuned and efficient, failures of clients can siguifitly complicate the recovery pro-
cess. Hence any locking-based consistency protocol nagitsoaal distributed crash recovery
algorithms or lease-based timeout mechanisms to guaranteectness. Frangipani [125] and
Petal [70] together implement a distributed storage sysferangipani is a distributed file sys-
tem built to operate on top of a distributed virtual disk ifee provided by the Petal system.
Analogous to GPFS, coherence in Frangipani for data and-degtais maintained with the help
of a distributed lock server that provides multiple-redsiegle-writer locks to clients on the
network, and uses leases [49] to handle with client failutekewise, the Global File System
(GFS) [91, 92] (a shared-disk, cluster file system) also disesgrained SCSI locking com-
mands, lock-caching and callbacks for performance andrsgnization of accesses to shared
disk blocks, and leases, journalling [92] for handling némikures and replays. The CAPFS file
system eliminates much of the client state from the enticegss, and hence client failures do
not need any special handling.

Providing a plug-in architecture for allowing the userdefinetheir own consistency
policies for a parallel file system is a contribution uniqueQAPFS file system. Tunable con-
sistency models and tradeoffs with availability have bedied in the context of replicated
services by Yu et al. [142, 143]. Swarm [122] provides ther wgigh a choice of consistency
policies for a wide-area object store.

Sprite-LFS [103] proposed a new technique for disk managénmvehere all modifica-
tions to a file system are recorded sequentially in a log, Whfieeds crash recovery and writes.
An important property in such a file system is that no disk kl@cever overwritten (except
after a disk block is reclaimed by the cleaner). Contenteskhbility helps the CAPFS file

system gain this property, wherein updates from a procesmtoverwrite any existing disk or

www.manaraa.com



60
file system blocks. Recently, content-addressable stgragaligms have started to evolve that
are based on distributed hash tables like Chord [116]. A kepgrty of such a storage sys-
tem is that blocks are addressed by the cryptographic hashksir contents, like SHA-1 [87].
Tolia et al. [127] propose a distributed file system CASPER tltilizes such a storage layer
to opportunistically fetch blocks in low-bandwidth scapar Usage of cryptographic content
hashes to represent files in file systems has been exploremymsly in the context of Single
Instance Storage [11], Farsite [2], and many others. Sirtoléog-structured file systems, these
storage systems share a similar no-overwrite property usecavery write of a file/disk block
has a different cryptographic hash (assuming no colligioB&PFS uses content-addressability
in the hope of minimizing network traffic by exploiting commetity between data block, and
to reduce synchronization overheads, by using hashes &apchpdate based synchronization.
The no-overwrite property that comes for free with contesidrassability has been exploited to
provide extra concurrency at the data servers.

In the context of multi-processor systems, Herlihy proplseck-free and wait-free syn-
chronization algorithms [52] that makes use of the loaldih and store-conditional instruc-
tions [58, 75, 112] provided by the micro-processor thateffrely bounds the number of steps
before which an operation to a shared region will completethe context of databases, opti-
mistic concurrency algorithms [3, 126] have been propobkatifbcuses on delaying the locking
of shared regions to achieve better scalability. An impilaaof the above property in the opti-
mistic model is that transactions could fail and hence waoled to be retried, while traditional
pessimistic models obtain locks prior to updates and hemmgdralways succeed. The proposed

system makes use of a similar property by detecting confiatperations and retrying them.
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3.6 Chapter Summary

In this chapter, we have presented the design and impletm@ntaf a robust, high-
performance parallel file system that offers user-definassistency at a user-defined granu-
larity using a client-side plug-in architecture. To the thes our knowledge CAPFS is the
only file system that offers tunable consistency that is akser-defined and user-selectable at
run-time. Rather than resorting to locking for enforcingiaézation for read-write sharing or
write-write sharing, CAPFS uses an optimistic concurrecmytrol mechanism. Unlike previous
network/parallel file system designs that impose a congigtpolicy on the users, our approach
provides the mechanisms and defers the policy to applicatavelopers and plug-in writers.

We now look into more traditional uses of CAS — for saving atm space and network
bandwidth. We next present a study of data collected froncugi@n of real world application

benchmarks, to analyze the pros and cons of using CAS.
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Chapter 4

Content Addressable Storage : Pros and Cons

4.1 Introduction

Content Addressable Storage or CAS has been an increagioglylar tool in recent
systems literature, often used as a silver bullet to marerge datasets by reducing their storage
and network bandwidth requirements [12, 4, 93, 134, 83]. dlm@ve savings are achieved by
eliminating duplicate instances of dataunks(blocks). Applications that manage large datasets
are potential beneficiaries. We illustrate our case with éxamples.

First, imagine a data-center where multiple virtual maebimre hosted on the same
server [1, 55, 76]. On powering up, each virtual machine fetthes its own virtual disk from
which it boots its own guest operating system. Presumaldjgrificant number of the virtual
disks have the same operating system. The storage backsrbtises all the virtual disks could
use CAS to exploit theommonalitybetween the virtual disks, thereby over-committing the
storage resource, similar to the way virtual machines ofer-commit memory. The compute
node on the other hand could use a CAS based store locally qhoitecommonality across
the multiple virtual disks that are hosted locally, therelipwing more virtual machines to be
hosted on a single node. The use of a CAS based cache, coultkrstartup time (potentially
dominated by the time required to fetch the virtual disk)rr@ few minutes’ [55] to a smaller

amount by exploiting commonality between data to be fetcretidata available locally.
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Or take the case of a grid application that periodically &pemnts its data for recovery
or visualization purposes. For example, the TeraShakegrgenerates close to 50 TB of data
from one run [89]. Of this about 43 TB comprised of data geteetdteratively, each time
step. Such behavior is not uncommon for scientific applicesti In these applications another
requirement is to drain the low capacity local scratch gferaolume so that the data from the
next iteration can be stored. CAS can once again be usefeldyeexploiting any commonality
across iterations. The savings achieved in the storage etmebrk bandwidth requirements can
potentially change a task (like ‘on the fly’ graphics for Tehake) from the realm of infeasible
to feasible.

Key to this usage of CAS, is the assumption of finding commtynel data. Common-
ality however, is an intrinsic property of the dataset ftsdery few analyses are available into
the commonality inherent to datasets themselves. These Hre context of user data like web-
pages[100], home-directories[80, 12], source-code[12Bjual-machine image snapshots[83],
or storing employee’s file-systems [93]. We wish to find owvhmuch commonality exists in
data from real world applications and what overheads carnxpeated in exploiting this com-
monality using CAS. To the best of our knowledge, this is th&t §tudy into the use of CAS
on real world data from live applications. What has made Wosk more challenging is that
common, publicly available block level or file level traces ot contain enough information
about the actual content of the data. Hence we prepared angiled the applications and
used the content addressable file-system platform dewtliop€hapter 3 to run the application

benchmarkdive and generate traces containing the relevant information.
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In this chapter, we investigate, i) the commonality preseméal-world data; ii)the stor-
age space savings using CAS; and iii) the network bandwiltings when using a CAS repos-
itory and a local content addressable cache. A CAS baseel Istarhidden overheads affecting
not just the amount of storage space required, but also theresilience of data. By removing
duplicate chunks of data, and hence reducing the redundafindgta, CAS magnifies the loss
inflicted on storage when data corruption occurs. We comroanhese overheads and also on
the run-time overheads that are seen when using a CAS-bésegdiem.

We introduce our CAS evaluation methodology and benchmarggction 4.2 and eval-
uate the benefits and challenges posed by CAS in Section d.Sextion 4.4 respectively. Sec-
tion 4.5 has a discussion on the lessons learned from thigsasthat might help a design a CAS
based system and/or decide suitability of a CAS based sy&tethe application in question.

Section 4.6 outlines the related work before summarizingesults in Section 4.7.

4.2 Methodology for Evaluating the Efficacy of CAS

To undertake an analysis of CAS on data generated by an apipfic one would require
a trace-log of all the read/write requests. The requestaldrmntain information about either
the content being read/written so that it's CAS name (SHAshhaan be generated, or the CAS
name (the SHA1 hash) itself. Unfortunately, this is not tofi@ny of the commonly available
public traces that we know of. In fact, most traces recortithuss meta-data information, not the
content of the requests, which is essential for this study. Even éhsa trace with the chunk
names were to exist, in order to analyze the application aladiadifferent chunksize, one would
need to re-run the application on a file-system using the rewksize — a simple extrapolation

would lead to inaccuracies.

www.manaraa.com



65

Hence we needed a mechanism to run the application(s),laa@nd record the SHA1
hashes of the data and all the 1/O requests. For this reaschage to use our experimental con-
tent addressable file-system — CAPFS (described in Chaptes Betailed in the previous chap-
ter, each CAS server (data server) exports two primitiveget(hash) and ii) put(hash,data)
To implement these primitives, the CAS server manages, iinple in-memory database of
hash, locationtuples for chunks housed on the server, and ii) the data chtihdmselves. In
our experimental setup CAPFS was used with POSIX consigteamantics on a single CAS
server. The CAS server was configured to use an in-memorythb#dhas the database, indexed
by the 20 byte SHAL hashes. Using a single CAS server simplfezjuencing of the get/put
requests in the trace log. Similar trace logging was enaétedll the client nodes running the
application benchmark. The trace thus generated at thet @ied CAS server was sufficient to
reconstruct the execution of the benchmark without runitimgain. We ran CAPFS with vari-
ous chunksizes and the traces thus obtained were analymstdirhentation of the CAPFS client
and server daemons gave valuable insight into CAS basedrpehce issues such as SHA1
hash generation overhead, as described later.

The experiments were run on an IBM xSeries 20-node clustachach node has a
dual hyper-threaded Xeon clocked at 2.8 GHz, equipped wBhGB of RAM and a 36 GB
SCSiI disk. The nodes run Redhat 9.0 with Linux 2.4.20-8 Karampiled for SMP use and are

connected by a gigabit ethernet network.

4.2.1 Applications used as Benchmarks

A synthetically generated dataset may either contain tde iommonality (e.g. a dataset

made from random data) or might have too many regular patt@ery. a dataset made from
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| Name] Type | Description | Size |
gene-dbase Static Dataset | Dataset containing genes from GenBank 103 MB
btio | Live Application | Part of the NAS parallel benchmark set 400 MB
bssn| Live Application | The BSSN PUGH benchmark from Cactus 1.6 GB
heat-solver| Live Application | A generic heat-solver 106 MB
dbt2 | Live Application | OSDL Database Test 2 - a TPCC-like benchma®06 MB

Fig. 4.1. Benchmarks used

repeating different entries). In essence, commonalityhigiherent property of an application’s
data, and a study of CAS would be highly dependent on the atr@iuisommonality in data.
With this factor in mind, we use the five datasets listed inld&@hl as benchmarks for studying
the performance of CAS.

The gene-dbaselataset contains a set of 10 randomly chosen genomes frodGBé
GenBank database [84]. The genomes were uncompressed-tautachafter download to form
the dataset. We were unable to compile a suitable applic#tiat uses this dataset. Hence this
dataset was statically analyzed as-is for inherent comiitgn@he other four datasets are the
result of the execution of a live application, and are hendi&ated as such Table 4.1. The BTIO
application [82] is based on a computational fluid dynam{€E[}) code that uses an implicit
algorithm to solve the 3D compressible Navier-Stokes eguat We ran the A class version of
the application using the full-mpiio version. Thssnapplication is a Cactus [23] benchmark
application of a numerical relativity code using finite diffnces on a uniform grid [21]. It uses
the CactusEinstein infrastructure to evolve a vacuum sfiaees using the BSSN formulation of
the Einstein equations. THwat-solvelis a standard heat solver written in Fortran using MPI.
btio, bssnandheat-solverrun in iterations, create data periodically and updateeceithe same

data or generate new data during the application lifetinfesg three scientific applications can
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be configured to run on a single node or multiple noddbt2 is the OSDL Database Test 2
benchmark [35]. It is a TPCC-like benchmark that loads ®lido a Mysql server at start-up
and runs queries on these tables for a specified time. We coefighe benchmark to run with
three warehouses (with default values) and ran queriesl tireé warehouses for five minutes.
The Mysql server was configured to store itmodbtablespace on the file-system exported by
CAPFS. All other tables that were loaded by Mysql were alsoest on this file-system. The
doublewrite buffer was stored on a local scratch file-syst&¥e trace the execution of all the
live applications by instrumenting the CAPFS filesystem. Theetlags thus obtained help us
to do post-mortem analysis on the data. The above five datese¢r data from three scientific
applications, one on-line transaction processing (OLTéMcbhmark and one dataset containing
archival data gene-dbase The datasets thus acquired are from different sourceotmaried

sizes.

4.3 CAS: Pros

In this section we investigate two advantages offered by CiA§avings in storage space,

and ii) savings in network bandwidth from use of a CAS-basathe at a client.

4.3.1 Savings in Storage Space

CAS has a direct impact on the amount of space required te diin. We compare the
savings obtained by the use of CAS against a default non-@&8 where the data is stored on

a log-based file-system (no in-place writes).
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Fig. 4.2. Savings in storage space as a function of chunksize

4.3.1.1 Impact of chunksize

The chunksize in use for a CAS-based store is a tunable p&gathat affects its per-
formance. The curves in Figure 4.2 depict the effect of ckimekon the space required to store
the datasets under consideration. As one might expectathiegs in storage space are higher at
smaller chunksizes. Figure 4.2 shows thatlig# applications benefit from CAS. This in itself
is a very surprising result indicating that applicationattinanage floating point data (scientific
applications) and binary records exhibit some commonality

The bssnbenchmark at a 128-byte chunksize achieves 99% disk-spadsgs. As the
chunksize increases to 1 KB and 2 KB, the savings fall onlygmally to 98% and 97% re-
spectively. The savings for tHeat-solverdata decrease from 19% at a 128-byte chunksize to a
steady value of 5% at a 2 KB chunksize and beyond. The use ofSai&s saves 6% at a 128

byte chunksize fobtio, and about 3% at chunksizes greater than 4 KB. dt2 benchmark
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also benefits tremendously from the use of CAS, with the ggviteclining marginally from
72% at a 128-byte chunksize, to 64% at a 16 KB chunksizenfpfirecipitously from there on.
The reason behind the gentle decline in savings till the 16cKihksize lies in the fact that the
Innodb tablespace housed on the CAS store uses an intemgalsize of 16 KB. As a result,
all chunksizes less than or equal to this value extract theesamount of commonality from
the tablespace data. This also explains the sharp drop ingsakkeyond the 16 KB chunksize.
The gene-dbase@lata has some exploitable commonality (12%), only at thdlsestachunksize
of 128-bytes. This is not too surprising considering thé thataset contains binary data. The
gene-dbaseavings values when compared with the others, indicatéghbee could be other
reasons for finding commonality at higher chunksizes in tthemoapplications. We investigate

this next.

4.3.1.2 Applications benefiting from CAS

We can view commonality in data as arising from -+ni¢idental commonalitypetween
data chunks generated in the same iteration, and ii) comiiodae to data chunks that stay
un-modified across iterationgtdrative commonality The three scientific applicationbgsn,
heat-solver, btip have clear, well-defined iterative behavior in data getimma Thedbt2 and
gene-dbasalatasets do not have such iterative data generation patbewh hence any gains
from the use of CAS are realized by incidental commonalitthmdata itself. It is important to
note here that CAS based schemes can expiiitypes of commonality, while non-CAS based

schemes may be able to identify only iterative commonadisyshown below.
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Fig. 4.3. Identifying commonality in data due to iterativehlavior

In order to quantify commonality resulting from the itevatinature of an application,
we applied aiff like filter and compared the data generated across itematibhis was accom-
plished by comparing the list of hashes for data belongingrte iteration and the next. The
savings thus obtained (shown in Figure 4.3) are obtained ffata remaining unchanged across
iterations. The curves labeled bssn, heat-solverndbtio are the identical to similarly la-
beled curves in Figure 4.2, while the curves obtained byyapglthediff filter appear with aliff
subscript.

We observe that there is significant iterative commonakiyr example, the two curves
for btio and btiog;fy are identical indicating that all the savings for this apglion is due
commonality across iterations. Similarly, a large fraotaf the savings for the other two appli-
cations bssnandbtio) come from their iteration based behavior. The incidentahmonality

within data chunks of an iteration is the difference in valbetween a curve and its diff-based
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version in Figure 4.3. This value varies not just with thecsfpe application itself, but also with
chunksize. Fobssn this value is as high as 21% at a 1 KB chunksize. In the cakeaifsolver
this difference is as high as 7% at a 128-byte chunksize gipetrs down to less than a percent at
a 1 KB chunksize, whiltio hardly has any commonality between chunks of the sameiiarat

This brings us to the conclusion that, i) commonality frordesliterations provides sig-
nificant savings, which may be be realized by the use of a "8, diff-based mechanism; and,
i) applications also have commonality across data churniksimthe same iteration. Savings
from the latter can only be exploited by CAS based schemes. €ktent varies not just from

application to application, and also with chunksize.

4.3.1.3 Commonality Profile

We now analyze the commonality profile of the data housedea€#hS store for possible
clues to the source of commonality in the respective datagégure 4.4 examines a CAS-based
store that houses the data generated from an entire run gbg@itation benchmark. The x-
axis lists each chunk in the system and its commonality isvehon the y-axis. The chunks
are numbered in decreasing order of commonality. WBtie data (Figure 4.4(c)) stands out
for having a low and flat profile, indicating that the datasas hardly any commonality. The
observable commonality of 40 for a large number of chunkdicites that certain portions of
the dataset, never change in value throughout the 40 datragén iterations of the application.

The left-most chunk or chunk #1 is the chunk that occurs mieguently in the data. The
dbt2data (Figure 4.4(d)) is unique in that if few leftmost chumke ignored, then the remaining
dataset exhibits very little commonality. For example, 28-byte chunksize, the commonality

of the chunks (in order) are 3074290, 2429, 1276, 1249, 4Hlevat a 1 KB chunksize the
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commonality of the chunks are 343846, 201 ... and at a 32 KBidize the first chunk has
a commonality of 10048 followed by a commonality of just 9e&y the first chunk brings a
hugeamount of savings. We manually inspected the data to findhisathunk is theero chunk
(a chunk composed entirely of zeroes). This is perhaps dtrethe database’s tablespace
allocation policy where 64 contiguous pages (each of 16 KB)sire allocated together to reduce
fragmentation. If this chunk is ignored, tdbt2data looks surprisingly similar to theeat-solver
data (Figure 4.4(b)). Similarly, for thibssndata (Figure 4.4(a)), at a 128-byte chunksize, the
most common chunk occurs over 9 million times. This too wasibto be the zero chunk,
indicating that thévssndata contains sparse matrices. The zero-block providesot@be space
savings out of the 99% savings shown in Figure 4.2. The ren@i#3% savings obtained
from non-zero blocks compares favorably with the 19% savifog theheat-solverbenchmark
(Figure 4.2). Théneat-solverandbtio data were found to contain no zero blocks at all.

An important lesson here is that applications that use spaggrices or tables, out of ob-
vious program design or as a result of internal data alloogtiolicies, can benefit tremendously

from the use of CAS.

4.3.2 Content Addressable Caching: Savings in Network Banwgidth

The use of CAS impacts the amount of data to be sent over theoretn two ways.
First, CAS can be used as a compression mechanism. By itiyeamainking a large read or
write into smaller parts, CAS removes the repeated chunéissanding only the unique chunks
over the network. Second, CAS can be viewed as a cachingiteehto eliminate not just reads
but also writes to a remote repository. For example, a wriggy mot require the actual data to

be written out if the chunk to be written already exists in @&S repository. At the same time,
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similar to a more traditional data cache, a read need notdpgested from the repository if it
can be satisfied by another chunk with the same contentaslaifrom a locally cached pool of
chunks fetched earlier. The results in this section inditia¢ benefits of using CAS for reducing
network network data.

For this analysis, the trace of the read/write requestsriltestin Section 4.2 were used
to evaluate the performance of a local cache on the clien¢,naith LRU being the eviction
policy. The percentage savings obtained with a buffer ofza 8 in Figure 4.5 indicates, i)
savings when using a CAS based cache of size S bytes to alesai®/writes, and ii) savings
in network bandwidth when outgoing messages are bufferagbhy S bytes. The baseline case
(the 100% mark) represents the size of the data to be sentnehesching used. We compare the
effectiveness of the CAS based caches against non CAS catliets would cache data based
on file offsets.

The applications have a mostly sequential write behavidrteance have minimal tem-
poral locality. Hence, the spatial locality of reads acdsufior the savings obtained with a
traditional (non CAS) cache. We observe in Figure 4.5(d) tha three scientific applications
perform very poorly when using a traditional LRU-based e&dchieving less than 0.5% sav-
ings even in the best case (32 KB chunksize). The CAS basansshperform impressively
under the same conditions. In fact, we can reason that a C#&IdzRU policy will always out-
perform an LRU based cache —a CAS based cache exploits htaogoral and spatial locality,
but also locality of content. For example, a request foola chunk (a chunk that has never been
accessed before), which is not spatially co-located to khitneing accessed recently, can still be

satisfied from a CAS based cache, provided another chunktidteame content already exists
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in the cache ! In cases where there is absolutely no comntpirathe data, a CAS based cache
will perform as well as a non-CAS LRU cache.

We observe that the use of CAS tremendously benesiss(Figure 4.5), in-spite of this
being a sequential, mostly write-only workload. This rédlustrates the ability of a CAS based
cache to reduce write traffic by removing writes containiagne content, even when temporal
locality is absent (sequential workload). As a result, tiant of data to be written by thessn
benchmarkcan be reduced by almost 100% at a 1 KB chunksiirgy asery small CAS based
cache. This is clearly due to the large commonalithésndata, as seen previously.

Overall, the use of CAS brings tangible results for all threghscientific applications. For
an iterative application if the CAS based cache is large ghda hold the data from an entire
iteration, the next iteration can then exploit commonadityoss iterations. This is corroborated
by Figure 4.5(b), wherbtio (which generates 10 MB of data per iteration) performs betteen
using a cache at least 10 MB large. Similarly in the caskeaft-solver which generates a file
of size 2 MB per iteration, a 2 MB sized CAS based cache is dmooigxploit commonality.
For both applications, savings of the order of 4% is achie@uthe other hand, fdissnwhich
generates about 260 MB of data per iteration, the savingsragith a much smaller cache size.
This indicates that it is not the size of the data in the whtdeation that impacts the minimal
cache size. Rather, it is the size of th@quedata generated per iteration. Recall from Figure 4.2,
that about 99% of thbssndata can be eliminated via CAS. This leaves about 1% of treaat
data belonging to unique chunks, which fits in well with oupbthesis regarding the cache size.

Thedbt2benchmark also shows remarkable benefits from the use of as@s&i cache,

indicating that eliminating redundant data brings vennigigant gains (Figure 4.5(b)). Ata 32
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Fig. 4.6. Percentage savings in network 1/0 with a CAS baaeteon a multi-node experiment

KB chunksize, the performance drops noticeably due to thalleml6 KB internal page size
used by the application.

The heat-solverapplication creates new data every iteration as a new filea Aesult,

a traditional is helpless, while the CAS based cache stdldaeasonable hit-rate. This stems
from the ability of a CAS based cache to loolalitthe data encountered, even across file-names.
However, for a fair comparison, we did not disadvantage tR&/tbased non-CAS cache in this
manner when calculating the curve fogat-solvelin Figure 4.5.

Multi-node experiments : We also evaluate the savings obtained with a CAS based
cache when running the scientific applications on multipient nodes ¢bt2 runs on a single
node). Figure 4.6 shows the savings obtained on node 0, wimgring the application on mul-
tiple nodes, each using a CAS based cache. Figure 4.6(@ptedithat when each node deals
with a specific subset of the whole data, there might be s@amifly more commonality to be
exploited. On increasing the number of nodes from 1 to 4 tor ®fio, the savings obtained by

the use of a very small cache increase from about 4% to 18%ntosald0% respectively. In fact,
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if a larger cache size were (100 MB in the 4-node case, or 50 MiBe 9-node case), then the
benefits would be even higher. As the number of nodes incréaselata generated per iteration
per node bybtio decreases, hence a progressively smaller cache size isegdo realize the
benefits. On the other hand, poor data-partitioning acroses leads to minimal or negative
increase in savings, with increase in number of client npdsisible in Figure 4.6(b). Here,
in the case oheat-solver on increasing the number of client nodes from 1 to 4, thengpvi
decrease marginally from 5.5% to 4.6%. However, it takes almamaller cache size (0.5 MB)
to achieve these savings with 4-nodes. On going up to 9-ntitedata savings increase to 19%.
Thebssndata has close to 100% savings for multi-node experimemt$ance is not shown.

In summary,

e The use of a content addressable caches is always benefieiad oon-CAS based cache.

e For optimal performance from a CAS based cache with an iterapplication, the cache

size allocated should be larger than the amount of uniqueegkierated per iteration.

e CAS based caching performs even better when applicationisigra data across nodes to

do the computation in a distributed manner.

4.4 CAS: Cons

In this section we look at the demerits of using CAS. We irigest¢ the problem of added
overheads in terms of maintaining extra meta-data, coscafrdecreased error resilience at the

CAS store and performance related issues.
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Fig. 4.7. Savings in storage space as a function of chunksicleiding meta-data overheads

4.4.1 Meta-Data Overheads

The preceding discussion from Section 4.3.1 indicatesdh@AS based store has the
potential for significant space savings. As described inpBra2, these savings have an added
cost — that of maintaining an additional mapping from fileseff (chunk number) to the hash
(the name) of the chunk. This meta-data, referred to aseitipe stores a hash value for each
N bytes of the file (N being the chunksize of the CAS file-sygte@n deducting the cost of
storing the hashes (20 bytes per hash for SHA1), the netgawahtained from the use of CAS
are shown in Figure 4.7.

Forbssndata, the savings increase from their 128-byte value of 8i8ceak of 96.5%
at at a 1 KB chunksize. The savings then decrease monotigrical0% at a 32 KB chunksize.
This interesting curve is a result of the tension between dywposing trends — commonality

in data versus the meta-data overhead. Smaller chunks@easthe potential to expose more
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commonality, and hence can save more disk space. Howevallesrohunksizes lead to more
chunks per file, hence largegcipes leading to more meta-data overhead. The large overhead at
a 128 byte chunksize diminishes the savings from CAS, froml@evof almost 99% in Figure 4.2
to 84% . As the chunksize increases to 1 KB and 2 KB from the ¥88\alue, the commonality
decreases marginally (less than 1% in Figure 4.2), whilertbta-data overheads drop 8-fold and
16-fold respectively. This remarkable drop in the metaadaterhead for almost no drop in the
savings leads to 1 KB being the most optimal chunksize fairgjdssndata. Beyond a 2
KB chunksize, the commonality itself drops appreciatiyéyading to a significant drop in the
savings. The nature of thdbt2 curve is almost identical, peaking at a 1 KB chunksize.

A similar trend is also observed for theat-solverandbtio applications. Théeat-solver
application peaks at a 512-byte chunksize, saving 7.8%gtmpace and then falls marginally to
6.6% at 1 KB. Beyond that the curve falls further. For smallrdksizes, the savings for thio
application starts in negative territory — at a 128-byterdtsize, the CAS store requires 9.6%
morestorage than a conventional data store ! Clearly, this igdtiee added overhead of having
to maintain recipes, while at the same time, not finding amcesavings due to commonality.
With an increase in chunksize, from a 128-byte value to a 2 KlBe; commonality stays rela-
tively constant at around the 5% mark (Figure 4.2), whilertteta-data overhead drops 16-fold.
As a result, the curve has its highest savings of 4.4% at a 2 iBlksize. Thegene-dbase
data does not exhibit any commonality (Figure 4.2) and tlideddneta-data overhead makes the
CAS store inefficient.

The above study indicates that small chunksizes of around lak€ best for storage
space savings. At smaller chunksizes meta-data overheadsven overwhelm any savings

from commonality.
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4.4.2 Decreased Error Resilience

By storing duplicate data chunks just once, a CAS based atirieves space savings or
compressionat the cost of error resilience. If the value of a chunk weeasured as the amount
of file data (user data) lost upon losing a single chunk in gpository, then for a traditional
data store, each chunk would be equally valuable. Undelairoonditions, in a CAS based
store, a chunk with a higher commonality would be more vdkiainplying that it's loss can
cause much more damage than in a traditional data store.gttsindata from Figure 4.8, we
can estimate the amount of user data rendered unusable ing lertain amount of (CAS
based) storage. Specifically, we would like to find out thetfaa of the user data lost on losing
a certain fraction of the storage space. We observe thatdbedata lost upon destruction of

chunk i in the storage system is given by

loss; = commonality; *x chunksize (4.2)
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In the worst case scenario for a CAS store, we would lose tret waduable chunks (chunks with
highestloss; values) first. Arranging all the chunks in non increasingeomf theirloss; values,
and choosing this sequence for progressive loss of storagegénerates Figure 4.9. The= x
line shows the baseline case — the non CAS store. A slope dhditates that losing B bytes of
storage would cause a loss of exactly B bytes of user dataindh CAS case. For CAS data,
as expected, higher commonality in data leads to poorer eggilience. From Figure 4.9 we
observe the corresponding trend — the smaller the chunksipee commonality), the farther
the curve from the non CAS case, and hence higher damageafleigle chunk. This stems
from the tendency of smaller chunksizes to expose more camalitp in the data. Thépssn
anddbt2 data, which have a large amount of commonality, also havevtret error resilience.
At a 1 KB chunksize, losing a few percentage of the storageespan destroy close to 100%
of the user data fobssn Increasing the chunksize to 32 KB reduces this probakititgbout
60%. In theheat-solver and btidata, we notice that the use of a 1 KB chunksize brings the loss
probability close to the 32 KB chunksize loss probability.

On the upside , CAS exposssmeinformation about the value of a chunk, to make
informed replication choices. A suitable replication pglcould be chosen for a chunk, perhaps
based on the commonality of a chunk, or its access popularifys age, or even a combination
of the above. Using such a policy, one might significantly riowe the error resilience of the
right chunks, or the dataset as a whole, without wasting too muabesg-or example, a policy
could choose to allocate a certain amount of storage enfiwekeplication of data. Figure 4.10
shows the effect of one such replication policy on errorlieste of thebssndataset for a 1 KB
chunksize. In this policy, the chunks are replicated in &dyemanner depending on their value

as calculated in equation 4.1. The percentage number tedida the graph indicates what
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percent of the un-replicated CAS data store was additipredlbcated for replicated chunks.
Even a small amount of replication (5%) makes significarfediince to the error resilience of

the dataset as a whole.

4.4.3 CAS Performance Overheads

Data in a CAS based chunk store undergoes more processingrtfzatraditional file
system. For example, as shown in in Figure 3.1, in the CAPESYistem, the CAPFS kernel
module intercepts a write (and all other system calls) arsdgmit down to a user-space CAPFS
daemon. This daemon chunks the data and generates a SHA{(#ESmame) for all chunks.

It updates the file recipe and sends the chunks to the CAS datars. On receiving a chunk, a
data server first looks up it's database of hashes to find i€llumk already exists. If it is a new
chunk then an entry is added to the database, indicatingatime mnd the assigned disk position

for the chunk. The chunk is then finally written out to disk.
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The chunksize critically affects the performance of the GA&e. A small chunksize
increases the recipe size of the file (thus increasing theamkttransfer size to the meta-data
server), causes inefficient network messaging and poortliskighput (due to small writes) at
the data server. Unlike a traditional filesystem, wheredampntiguous writes are sent to disk,
a data server processes one chunk at a time. Hence, thetlagygiguous write that a data
server commits equals the chunksize. The number of chuntks pwocessed (which depends on
the chunksize) affects not just the hash generation timtealba the time required to query and
update the database at a data-server.

In order to quantify the net effect of the above factors, wearbked the wall-clock time
required to store 200 MB of data into CAPFS. In this experitnes are interested in identifying
the overheads of various components of a CAS based systewar Bxperiment we ran CAPFS
with the data server and the meta-data server housed onig¢heitdelf to eliminate any network
related costs. Then we generate a 200 MB file from /dev/unandnd place it in /dev/shm.
The time to copy this file to the CAPFS filesystem was noted aedaged over multiple runs.
Between each run the filesystem was un-mounted, cleanea-@afxsting data and re-mounted
again.

Figure 4.11 shows the results of this experiment. Bh#Alcurve indicates the time
required to generate the SHAL hashes. Tukupcurve indicates the time required to process
the original data (generate chunks, generate SHA1 hashhamdqguery the CAS database for
chunk name entry) upto the point where the CAS database edbap for the hash. The
total curve indicates the total time required (including the abmokup time) to complete the

operation including disk /0.
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Fig. 4.11. Time required to write 200 MB of data to a CAS store

The SHA1 hash generation cost is larger at small chunksizes. 128-byte chunksize
it accounts for 5.8 seconds out of a lookup time of 22.5 ses@mdl drops to 1.9 seconds out
of 10.2 at a 1 KB chunksize. At 32 KB this reduces to 1.5 secand®f 8.8 seconds for the
lookup. In general the SHAL cost is about 14% of the total tifflee disk I/O overhead at the
data-server shows up as the difference betweelotli@ipand thetotal cost curves. It accounts
for almost half the total time at small chunksizes and settlenearly to less than 20% of the
total time for chunksizes of 2 KB and more. The lookup ovecheamprises of SHAL hash
generation, updating file recipe, time required to lookupheahunk name in the data-server
database and other constant miscellaneous overheads.|d hecipes are updated in-memory
and do not contribute much to the above times. Hence on erdildis cost, and the SHAL hash
generation cost, we are left with some constant miscellameosts and the database querying

overhead. This takes 16.6 seconds at a 128-byte chunkskse@nds at a 1 KB chunksize, 7.7
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seconds at a 2 KB chunksize and finally settling to 7.3 secat@82 KB chunksize. We surmise
that at small chunksizes the database component is significe to the larger number of hashes
stored in the database. The original CAPFS project [1344 aseinefficient implementation of
the database where this cost was much higher for small chunks

Other overheads (not evaluated here) include space retitamta garbage collection of
unused chunks resulting from over-writes or deletes at tita derver. One can imagine that
a garbage collection daemon would periodically wake up agldte data. If such behavior is
undesirable, then this could perhaps be done as part ¢dcoperation. This feature was
disabled in our tests and the cost has been ignored in thig.stu

Our conclusions are as follows,

A 1 KB chunksize or larger yields the ‘best’ file system penfance.

e Commonality information of chunks can be used to implemanpk replication policies,

that use little additional space, but considerably redheestror-proneness of CAS data

e SHA1 hash generation costs are not significant. When iggangtwork transmission

times, these costs come to less than 15%.

e The most significant overhead is querying of CAS repositonttie presence of a chunk.
This overhead grows significantly with increase in the numdfechunks housed on the

repository.

4.5 Discussion

When to use CASAs seen in Section 4.3.1, commonality varies from applicatio

application. In certain applications, the presence of comality may be due to the iterative
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data generation behavior of the application. A good exarfgléhis case are the scientific ap-
plications that periodically checkpoint their results &mdyenerate data iteratively. Other cases
where commonality can be hoped for, include applicatiord thanipulate large sparse matri-
ces, bitmaps or tables. Development and experimentabptasf often compile and execute the
same workload multiple times till confidence is attainedctsplatforms would incur negligible
storage and network 1/O costs after the very first run, siheedata would already exist on the
CAS server. When commonality due to data generation or usalgavior is not obvious, space
savings should not be the primary motivation behind the G€2A%.

As seen in Section 4.3.2, use of a content addressable caghgdod design choice.
In the worst case of no extractable commonality, a CAS baaetecwill perform as well as a
non-CAS cache with added computational overheads. Thistbogerformance comes from
the ability of CAS to look not just at different parts of a fileut across files as welblobal
naming. By use of this property of CAS for de-linking the chunk nafren filename, a system
can achieve exploit caches without concerns of consistas@utlined in [134, 128].

What chunksize to useQur results indicate that at small chunksizes the overheats
weigh any gains from the use of CAS. Use of a small chunksiZek® or even 2 KB provides a
good trade off between gains from space savings/cachintg-data overheads, error resilience

concerns and performance.

4.6 Related Work

The Farsite distributed file-system from Microsoft was jagrh the first study [13] into
existing commonality in file-systems. In their investigatihowever, Bolosky et. al. look at

eliminating duplicate data at the file granularity rathearthat a file-system block granularity.
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Muthitacharoen et. al. proposed the Low Bandwidth File &ysf80] that eliminates common-
ality in the network data stream across variable sized chuRlabin [96] introduced the idea of
generating variable sized chunks by detecting naturalkbbmzindaries. Broder et. al. present
applications of this algorithm [17] and Chan et. al. provaseimplementation for the same [26].

The Farsite project implements a Single Instance Store (8 €tare) for the Windows
2000 NTFS volume [12, 4]. The Plan 9 project from Bell Labssutte Fossil file-system [94]
to store snapshots of a live system on top of Venti [93], aeindaddressable backend. CAPFS
or the Content Addressable Parallel File System [134] isatel file-system that exploits CAS
for bandwidth savings. Various content based chunking ottthave been used in Pasta[78],
Pastiche[32] and REBL[67]. Ajtai et. al. [5] provide a comipan of the above methods.

Tolia et. al. first coined the termecipes[130] as a means of using hashes to summarize
file content. The use of hashes as a means of detecting siooitaent has been looked at
in [74, 18, 19]. The rsync protocol [131] uses MD5 hashes @nparing files. Cryptographic
hashes have also been used to synchronize content acrbisategpcollections [120, 56]. Chord
[117], CFS [34] and Pond [99] exploit the global naming pmypef CAS. Sundr [71], Ivy [81],
Plutus [57] and Tripwire [59] use CAS based hashes to vehiéyittegrity of data. Nath et. al.
provide an analysis of data from another real world apghbcatalled Internet Suspend/Resume
in [62]. That study estimates the benefits of using CAS to airsual machine snapshots.

Compare by hash, the underlying principle of CAS has beditized in [51] for being
prone to collisions (two or more blocks generating the sat&Bhash). More recently how-

ever, the Monotone team [77] and Black [10] have shown thatrttay not be a large concern.
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4.7 Chapter Summary

In this chapter, we have evaluated the pros and cons of doatlelnessable storage for
five real world datasets and found it to be beneficial (to varyiegrees) for storing scientific
data and data from a TPCC-like benchmark. We find CAS to beuli$af applications that
display iterative data generation patterns, or managespables or datasets. Significant savings
in network bandwidth can be achieved by the use of a contatreadgable cache, only a few
megabytes in size. We find that a 1 KB, or 2 KB chunksize provitie best space savings,
when accounting for meta-data overhead due to SHA1 hashieis. cliunksize also provides
good savings in network bandwidth and reasonable errdiesse. We note that the overheads
of computing the SHA1 hashes in a CAS based store are aboutwhét neglecting network
I/O costs.

In this chapter, through our analysis of application benatks, we obtained a notion
of the benefits and demerits of CAS. Unfortunately, this ytooluld not take into account real
world data usage patterns. For example, in the real worldlicgiions are often run several
times, either with the same parameters or different onesch EExecution of the application
might generate exactly the same or somewhat similar dataa Eaditional data store, the net
I/O generated would equal the 1/O generated per executioestithe number of executions. If
however, the system were to be run on a CAS based storagerpialike CAPFS, then the
I/O generated after N executions of the application couldigeificantly less than N times 1/0O
generated per execution. This would depend on how ncoaiimonalityexists between the data
generated across different executions. If the data gestbiatidentical (application is run with

same parameters), then onIy]\/ltﬁ of the total data will need to sent to the storage over the
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network. To incorporate such usage behavior in the realdyavie now turn our attention to

a case study analysis of an application, deployed in thewedd for a period of about seven

months.
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Chapter 5

Case Study: Internet Suspend/Resume

5.1 Introduction

The systems literature of recent years bears witness tondisantly increased interest
in virtual machine (VM) technology. Two aspects of this teglogy, namely platform inde-
pendence and natural state encapsulation, have enablexpplieation of this technology in
systems designed to improve scalability [24, 40, 47, 98, 124], security [43, 65, 139], relia-
bility [9, 16, 28, 73, 135], and client management [27, 23, 64

The benefits derived from platform independence and stat@psnlation, however, often
come with an associated cost, namely the management ofisggridata volume. For example,
enterprise client management systems [27, 64] may requirestorage of tens of gigabytes of
dataper user For each user, these systems store an image of the usérs\ékt state, which
includes not only the state of the virtual processor andqiat devices, but the memory and
disk states as well.

While this cost is initially daunting, we would expect a eaflion of VM state images
to have significant data redundancy because many of the wikesnploy the same operating
systems and applications. Content addressable storagg)(@A, 80, 93, 107, 135, 141] is an
emerging mechanism that can reduce the costs associatethisivolume of data by eliminating
such redundancy. Essentially, CAS uses cryptographicifigsichniques to identify data by its

contentrather than by name. Consequently, a CAS-based systendeiitify sets of identical
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objects and only store or transmit a single copy even if higénvel logic maintains multiple
copies with different names.

To date, however, the benefit of CAS in the context of entsessicale systems based
on VMs has not been quantified. In this study, we analyze daifzireed from a seven-month,
multi-user pilot deployment of a VM-based enterprise dlimanagement system called Internet

Suspend/Resume (ISR) [63, 108]. Our analysis aims to artswedpasic questions:

Q1: By how much can the application of CAS reduce the systsinigge requirements?

Q2: By how much can the application of CAS reduce the systeetwork traffic?

The performance of CAS depends upon several system paranmétee answers to Q1 and Q2,

therefore, are analyzed in the context of the two most ingmbrbf these design criteria:

C1: Theprivacy policy and

C2: theobject granularity

The storage efficiency of a CAS system, or the extent to whadnimdant data is eliminated, de-
pends upon the degree to which that system is akittetatify redundant data. Hence, the highest
storage efficiency requires users to expose cryptograpbists to the system and potentially
to other users. As we shall see, the effects of this exposameébe reduced but not eliminated.
Consequently, criterion C1 represents a trade-off betvetanage efficiency and privacy.

Object granularity, in contrast, is a parameter that dastdtow finely the managed data is
subdivided. Because CAS systems exploit redundancy abjbetdevel, large objects (like disk
images) are often represented as a sequence of smalletsobjer example, a multi-gigabyte

disk image may be represented as a sequence of 128 KB oljectaifik3. A finer granularity
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(smaller chunksize) will often expose more redundancy thaarser granularity. However,
finer granularities will also require more meta-data tokrée correspondingly larger number of
objects. Hence, criterion C2 represents the trade-off etvefficiency and meta-data overhead.

The results obtained from the ISR pilot deployment indi¢hte the application of CAS
to VM-based management systems is more effective in redustiorage and network resource
demands than applying traditional compression technokgh as the Lempel-Ziv compres-
sion [145] used imgzip. This result is especially significant given the non-zeno-time costs of
compressing and uncompressing data. In addition, conthi@iaS and traditional compression
reduces the storage and network resource demands by a éddieo beyond the reductions
obtained by using traditional compression technology @lon

Further, using this real-world data, we are able to deteerttiat enforcing a strict privacy
policy requires approximately 1.5 times the storage resmirequired by a system with a less
strict privacy policy. Finally, we have determined that &fficiency improvements derived from
finer object granularity typically outweighs the meta-daieerhead. Consequently, the disk
image chunksize should be between 4 and 16 KB.

Sections 5.4 and 5.5 will elaborate on these results fronpilbe deployment. But first,
we provide some background on ISR, content addressabkgstoand the methodology used in

the study.

www.manaraa.com



95

5.2 Background

5.2.1 Internet Suspend/Resume

Internet Suspend/Resume (ISR) is an enterprise client geamant system that allows
users to access their personal computing environments different physical machines. The
system is based on a combination of VM technology and dig&ib storage. User computing
environments are encapsulated by VM instances, and treedftatich a VM instance, when idle,
is captured by system software and stored on a carefullyageth server. There are a couple of
motivations for this idea. First, decoupling the computimgironment from the hardware allows
clients to migrate across different hosts. Second, stofivigstate on a remote storage repository
simplifies the management of large client installationse Physical laptops and desktops in the
installation no longer contain any hard user-specific stael thus client host backups are no

longer necessary; the only system that needs to be backedthp $torage repository.

Content servers

Clients (work) - Clients (home)

alice bob chuck

S [ WinXp Checkin nux WITXp Checkout LWNXP D

(upload) v (download)

Fig.5.1. An ISR system.
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Figure 5.1 shows the setup of a typical ISR system. The ceghtstates of user envi-
ronments are known as known parcelsand are stored on a collection of (possibly) distributed
content serversFor example, in the figure, Bob owns two parcels. One enwiiemt includes
Linux as the operating system, and the other includes Wisd&i® Each parcel captures the
complete state of some VM instance. The two most significatgs of state are thmemory
imageand thedisk image In the current ISR deployment, memory images are 256 MB and
disk images are 8 GB. Each memory image is represented agla file. Each disk image is
partitioned into a set of 128 KBhunksand stored on disk, one file per chunk.

For each parcel, the system maintains a sequence of chetdgaliff-basedversions
v],...,Uy_1,V,. Versiony, is a complete copy of the memory and disk image. Each version
v, 1 < v <w,,_1, has a complete copy of the memory image, along with the chtrokn the
vy, version of the disk image that changed between versioanduvy, , ;.

Each client host in the ISR system rund/& monitorthat can load and execute any
parcel. ISR provides a mechanism for suspending and tnaimgfehe execution of these parcels
from one client host to another. For example, Figure 5.1 shaacenario where a user transfers
the execution of a VM instance from a source h8sat the office to a destination host at
home.

The transfer occurs in two phasesclaeckinstep followed by aheckoustep. After the
user suspends execution of the VM monitor $nthe checkin step uploads the memory image
and any dirty disk chunks frorfi to one of the content servers, creating a new parcel version o
the server. The checkout step downloads the memory imadgeeahbst recent parcel version

from the content server t. The user is then able to resume execution of the parcé) (@ven
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before the entire disk image is present). During execuli®R, fetches any missing disk chunks

from the content servaan demandind caches those chunks at the client for possible later use.

5.2.2 Content Addressable Storage

Content addressable storage (CAS) is a data managementapphat shows promise
for improving the efficiency of ISR systems. CAS uses crympgic hashing to reduce storage
requirements by exploiting commonality across multipleadzbjects [39, 67, 90, 130, 134, 141].
For example, to apply CAS to an ISR system, we would represactt memory and disk image
as a sequence of fixed-sized chunk files, where the filenamacbf@unk is computed using a
collision-resistant cryptographic hash function. Sinbarks with identical names are assumed
to have identical contents, a single chunk on disk can beudled in the representations of
multiple memory and disk images. The simplest example & fienomenon is that many
memory and disk images contain long strings of zeros, mostha¢h can be represented by a
single disk chunk consisting of all zeros. A major goal oftbktudy is to determine to what

extent such redundancy exists in realistic VM instances.

5.3 Methodology

Sections 5.4 and 5.5 present our analysis of CAS technolothei context of ISR based
on data collected during the first 7 months of a pilot ISR dgplent at Carnegie Mellon Uni-

versity. This section describes the deployment, and howddte was collected and analyzed.
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5.3.1 Pilot Deployment

The pilot deployment (pilot) began in January, 2005, gigrtivith about 5 users and

eventually growing to 23 active users. Figure 5.2 gives ighlights. Users were recruited from

Number of users | 23

Number of parcels | 36

User environment | Windows XP or Linux
Memory image sizgq 256 MB

Disk image size 8 GB

Client software ISR+Linux+VMware
Content server IBM BladeCenter
Checkins captured | 817

Uncompressed size 6.5 TB

Compressed size | 0.5TB

Fig. 5.2. Summary of ISR pilot deployment.

the ranks of Carnegie Mellon students and staff and givero&etof a Windows XP parcel, a
Linux parcel, or both. Each parcel was configured with an 8 @GRial disk and 256 MB of
memory. Thegold imagesused to create new parcels for users were updated at vaitoas t
over the course of the pilot with security patches.

The content server is an IBM BladeCenter with 9 servers andbal'B disk array for
storing user parcels. Users downloaded and ran their maorelLinux-based clients running

VMware Workstation 4.5.
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5.3.2 Data Collection

During the course of the pilot, users performed numerousldiheperations, eventually
creating 817 distinct parcel versions on the content setveAugust, 2005, after 7 months of
continuous deployment, a snapshot of the memory and disgemaf these parcel versions was
taken on the content server. In uncompressed form, the soaptate would have consumed
about 6.5 TB. However, due to ISR’s diff-based represeamtatind gzip compression, it only
required about 0.5 TB of disk space. This snapshot state e@ed to another server, where it

was post-processed and stored in a database for later &nalys
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Fig. 5.3. Observed parcel checkin frequency

Figure 5.3 summarizes parcel usage statistics for the geygot data. Each point in the

figure represents a single parcel and indicates the numlsbaysf that parcel was active as well
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as its checkin frequency (average number of checkins pér dRarcels could be active for less
than the entire duration of the deployment either becaus@aincel was created after the initial
deployment launch or because a user left the study early degto student graduation or end-
of-semester constraints). Since new users were addedythoatithe course of the pilot, during
post-processing we normalized the start time of each usdaya@ero. No extrapolation of data
was performed, thus the usage data for a user who has usegstemdorn days appears in the
first n days worth of data in the corresponding analysis. We als@venh several parcels that

were used by developers for testing, and thus were not reptas/e of typical use.

5.3.3 Analysis

The August 2005 snapshot provided a complete history of thmony and disk images
produced by users over time. This history allowed us to askraber of interesting “what if”
guestions about the impact of different design choicesplicips, on the performance of the ISR
system. In particular, we explored three different storpghcies: a baseline non-CABelta
policy and two different CAS policies calld® andALL. These are summarized in Figure 5.4.

In each approach, a parcel's memory and disk images ardigaetil into fixed-sized chunks,

| Policy | Encryption | Meta-data |
Delta | private per-parcel key| none
IP private per-parcel key| (tag) array
ALL convergent encryption (tag, key) array

Fig. 5.4. Storage policy encryption technique summary.
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which are then encrypted, and optionally compressed usingentional tools like gzip.

As will be shown in sections 5.4 and 5.5, differences in tlogagte and encryption of
data chunks affect not only the privacy afforded to usersalsd dramatically alter the resources
required for storage and network transmission. For ouruatains, we chose chunksizes of 4KB
(a typical disk-allocation unit for most operating systérsd larger.

Delta policy. In this non-CAS approach, the most recent disk imageontains a com-
plete set of chunks. For each versior: n, disk imagev;. contains only those chunks that differ
in disk imagevy, , 1. Thus, we say that Delta exploitsmporal redundancgcross the versions.

Chunks in all of the versions in a parcel are encrypted udiegsame per-parcel private
key. Individual chunks are addressed by their position @ithage (logical block addressing),
hence no additional meta-data is needed. Memory imageegesented in the same way. Delta
is similar to the approach used by the current ISR prototyipe ¢urrent prototype only chunks
the disk image and not the memory image). We chose it as tieditadecause it is an effective
state-of-the-art non-CAS approach for representing vassof VM images.

IP (intra-parcel) policy. In this CAS approach, each parcel is represented by a separat
pool of unique chunks shared by all versions, ..., v,,, of that parcel. Similar to Delta, IP
identifies temporal redundancy between contiguous pasgsions. However, IP can also iden-
tify temporal redundancy in non-contiguous versions (eligk chunk: is identical in versions
4 and 6, but different in version 5), and it can also identifly apatial redundancyvithin each
version.

As with Delta, each chunk is encrypted using a single pecgdgrrivate key. However,
each version of each disk image (and each memory image)resqadditional meta-data to

record the sequence of chunks that comprise the image. titydar, the meta-data for each
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image is an array diags where tag is the SHA-1 hash of chunk This array of tags is called
akeyring

ALL policy. In this CAS approach, all parcels for all users are represthy a single
pool of unigue chunks. Each chunk is encrypted usiagvergent encryptiof37], where the
encryption key is simply the SHA-1 hash of the chunk’s ordjiplain-text contents. This allows
chunks to be shared across different parcels and users, i§ithe original plain-text chunks are
identical, then the encrypted chunks will also be identical

As with IP, each version of each disk image (and each memaagé@nrequires additional
keyring meta-data to record the sequence of chunks thateearthe image, in this case an array
of (tag, key) tuples, where key is the encryption key for chunk and tag; is the SHA-1 hash
of the encrypted chunk. Each keyring is then encrypted wijikraparcel private key.

The IP and ALL policies provide an interesting trade-offveeen privacy and space ef-
ficiency. Intuitively, we would expect the ALL policy to bedhmost space-efficient because it
identifies redundancy across the maximum number of chunksveMer, this benefit comes at
the cost of decreased privacy, both for individual userstardwners/operators of the storage
repository. The reason is that ALL requires a consistentygrtion scheme such as conver-
gent encryption for all blocks. Thus, individual users atdgnerable to dictionary-based traf-
fic analysis of their requests, either by outside attackerh® administrators of the systems.
Owner/operators are vulnerable to similar analysis, if, #ae contents of their repository are
subpoenaed by some outside agency.

Choosing appropriate chunk sizes is another interestidigypdecision. For a fixed
amount of data, there is a tension between chunk size anditbarda of storage required. In-

tuitively, we would expect that smaller chunk sizes wouldute in more redundancy across
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chunks, and thus use less space. However, as the chunk sieaskes, there are more chunks,
and thus there is more keyring meta-data. Other chunkidiptques such as Rabin Fingerprint-
ing [74, 96, 114] generate chunks of varying sizes in an gitémdiscover redundant data that
does not conform to a fixed chunk size. However, as describ&hapter 2, the evaluation of
non-fixed-size chunk schemes is beyond the scope of thig.stud

The remainder of the study uses the data from the ISR deploytaguantify the impact
of CAS privacy and chunksize policies on the amount of s@ragyuired for the content servers,

and the volume of data that must be transferred betweensl@m content servers.

5.4 Results: CAS & Storage

Because server storage represents a significant cost in 88debclient management sys-
tems, we begin our discussion by investigating the extemtich a CAS-based storage system

could reduce the volume of data managed by the server.

5.4.1 Effect of Privacy Policy on Storage

As expected, storage policy plays a significant role in tiieiehcy of the data manage-
ment system. Figure 5.5 presents the growth in storage rexgants over the lifetime of the
study for the three different policies using a fixed chun&gjz28 KB). As mentioned in Sec-
tion 5.3.2, the graph normalizes the starting date of alfsuse day zero. The growth in the
storage from thereon is due to normal usage of disks andggashmemory checkpoints be-

longing to the users. The storage requirement shown inslbdth the disk and memory images.
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Fig. 5.5. Growth of storage needs for Delta, IP, and ALL.

CAS provides significant savings.As shown in Figure 5.5, adopting CAS with the IP
policy reduces the required server resources at day 201 timel®elta policy by 306 GB, from
717 GB to 411 GB. This reduction represents a savings of 42%.

Recall that adopting CAS is a loss-less operation; CAS sirsigres the same data more
efficiently than the Delta policy. The improved efficiencydise to the fact that the Delta policy
only exploits temporal redundancy between versions. Thathe Delta policy only identifies
identical objects when they occur in the same location iresgbent versions of a VM image.
The IP policy, in contrast, identifies redundancy anywheithiwthe parcel — within a version
as well as between versions (including between non-sulesg¢gersions).

Note that the 42% space savings was realized without conigimmgrprivacy. Users in a
CAS-IP-backed system do not expose the contents of theirtdatny greater degree than users

of a Delta-backed system.
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Relaxing privacy introduces additional gains. In systems where a small relaxation
of privacy guarantees is acceptable, additional savingsgassible. When the privacy policy
is relaxed from IP to ALL, the system is able to identify adzfial redundancy that may exist
between different users’ data. From Figure 5.5, we see tledt a relaxation will reduce the
storage resources required by another 133 GB, to 278 GB.dthkdpace savings realized by
altering the policy from Delta to ALL is 61%.

On comparing ALL with IP in Figure 5.5, we see that the curvesapproximately par-
allel to each other. However, under certain situations stesiy employing the ALL policy could
dramatically outperform a similar system that employs tRepblicy. Imagine for example a
scenario where a security patch is applied by each of a langger, NV, of users in an enter-
prise. Assuming that the patch affected each user’s envieo in the same way, by introducing
X MB of new data, an IP server would register a total additiom\oX’ MB. In contrast, an
ALL server would identify theV copies of the patched data as identical and would consdguent
register a total addition ok’ MB.

The starting points of the curves in Figure 5.5 are also afradt. Because the X-axis
has been normalized, this point corresponds to the credttm of all parcels. To create a new
parcel account, the system administrator copies a goldémasagsersion 1 of the parcel. Hence,
we would assume that the system would exhibit very prediethbhavior at time zero.

For example, under the Delta policy which only reduces redngybetween versions
the system data should occupy storage equal to the numbeenf times the space allocated to
each user. In the deployment, users were allocated 8 GBdkrsgiace and 256 MB for memory
images. Thirty-six parcels should then require approx@lyaB00 GB of storage space which is

exactly the figure reported in the figure.
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For the IP policy, one would also expect the server to supgpseparate image for each
user. However, CAS had eliminated the redundant data withah of these images yielding an
average image size of approximately 4 GB. The observed 175t@Rge space is consistent
with this expectation.

Under the ALL policy in contrast, one would expect the systeratore a single copy of
the gold image shared by all users, yielding a total storageirement of 8 GB plus 256 MB
(closer to 4 GB, actually, due to the intra-image redundaglopination). We were quite sur-
prised, consequently, to observe the 72 GB value reporteteirfigure. After reviewing the
deployment logs, we determined that this value is due torttreduction of multiple gold im-
ages into the system. To satisfy different users, the systgministrators supported images
of several different Linux releases as well as several im&ta of Windows images. In all, the
administrators had introduced 13 different gold imagesumlper that is consistent with the
observed 72 GB of occupied space.

Another point of interest is a disturbance in the curve tltaues at the period around 100
days. We note that the disturbance is significant in the Deltae, smaller in the IP curve, and
almost negligible in the ALL curve. We've isolated the diktance to a single user and observe
that this anomaly is due to the user reorganizing his dislganaithout creating new data that
did not already exist somewhere in the system. Hence, wdwdmthat this must have been an

activity similar to defragmentation or re-installationani operating system.

5.4.2 Effect of Chunksize on Storage

In addition to privacy considerations, the administratbad/M-based client manage-

ment system may choose to optimize the system efficiencyrbgduhe chunksize. The impact

www.manaraa.com



107

750
700
650
600
550
500
450
400
350
300 256K -~

250 ‘ ‘ :

Storage space required (GB)

512K -+~

0 50 100 150 200
Time (days)
(a) Delta Policy

500 : : : x
450
400
350
300
250
200
150 ¥
100

0 50 100 150 200
Time (days)
(b) IP Policy

350 ; ; . :

300
250
200

150

100

50 ¥

0 50 100 150 200
Time (days)
(c) ALL Policy

Fig. 5.6. Storage space growth for various chunksizes witheeta-data overhead (y-axis scale

varies).
www.manaraa.com



108
of this parameter on storage space requirements is depittBdyure 5.6; in this figure, we
present what the growth curves of Figure 5.5 would have beenwe chosen different chunk-
sizes.

Note that the effect of this parameter is not straightfodvavarying the chunksize has
three different effects on efficiency.

First, smaller chunksizes tend to expose more redundandtyeirsystem. As a trivial
exercise, consider two objects each of which, in turn, casegrtwo blocks Qbject; = AB
andObjecty = C'A). If the chunksize is chosen to be a whole object, the cortddtesses of
Objecty andObjectq will differ and no redundancy will be exposed. If the churiesis chosen
to be a block, in contrast, the identicdlblocks will be identified and a space savings of 25%
will result.

Second, smaller chunksizes require the maintenance of meta-data. With the whole-
object chunksize from the example above, the system wouidtaia two content addresses, for
Object; andObjectq. With the block chunksize, however, the system must mairited sets of
two content addresses so th@atject; andObjecty may each be properly reconstructed. Note
further that this additional meta-data maintenance isiredquvhether or not any redundancy
was actually identified in the system.

Third, smaller chunksizes tend to provide a reduced oppdyttfior post-chunking com-
pression. In addition to chunk-level redundancy elimioatihrough CAS, intra-chunk redun-
dancy may be reduced through traditional compression tqobka (such agzip). However, as
the chunksize is reduced, these techniques have accessnallarsintra-chunk data pool on

which to operate, limiting their efficiency.
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Fig. 5.7. Server space required, after 201 deployment days.

To better understand the effect of chunksize, we analyzedléployment data for all
three storage policies with and without compression undgersl different chunksizes. The
results are shown in Figure 5.7.

All three effects of chunksize can be observed in this figkia.example, Figure 5.7(a),
which ignores the increased meta-data required for smellanksizes, clearly indicates that
smaller chunksizes expose more redundancy. These gaissnfal chunk sizes, however, are
erased when the meta-data cost is introduced to the stoegg@ements in Figure 5.7(b). Fi-
nally, the reduced opportunities for compression due tollemehunksize can be observed in
Figure 5.7(b) by comparing the IP and IP(gzip) or ALL and Abgkip) curves.

CAS is more important than compression.In Figure 5.7(a), the Delta curwegith com-
pressionintersects the IP and ALL curvedthout compressianThe same is true in Figure 5.7(b)
with respect to the ALL curve. This indicates, that given myppiate chunksizes, a CAS-based

policy can outperform compression applied to a non-CASetamlicy.
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Fig. 5.8. Meta-data overhead expressed as a percentagerafaia.

Considering meta-data overheads, the ALL policy outpem®bDelta with compression
for all the chunksizes less than 64KB. This is a very remdekabsult. Compression in the
storage layer may be a high latency operation, and it mayiderably affect virtual disk op-
eration latencies. By use of CAS, one can achieve savingeXeaed traditional compression
techniques! If additional space savings are required, cesgon can be applied after the appli-
cation of content addressing.

Figure 5.7(a) shows that compression provides an additemangs of a factor of two
to three. For example, the space demands for the ALL poligpsifrom 87GB to 36GB when
using 4KB chunks, and from 342GB to 137GB when using 512KBkbku

Exposing redundancy outweighs meta-data overheadrigure 5.8 shows the ratio of
meta-data (keyring size) to the size of the data. We obsaatghis ratio is as high as 80% for
ALL, and 35% for IP at 4KB chunksize without compression anehehigher after compression

is applied to the basic data. Yet, from Figure 5.7(b), we plesrom the IP and ALL curves that
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reducing chunksize always yields a reduction in storageirements. This indicates that the
gains through CAS-based redundancy elimination far extieeddditional meta-data overhead
incurred from smaller chunksize.

The picture changes slightly with the introduction of ttaatial compression. The IP(gzip)
and ALL(gzip) curves of Figure 5.7(b) indicate that the dewtlchunksize is not optimal. In fact,
we see from Figure 5.8 that the meta-data volume becomesarabip to the data volume at
small chunksizes.

Small chunk sizes improve efficiencyWith Figure 5.7(b), we are in a position to recom-
mend optimal chunk sizes. Without compression, the optohahksize is 4 KB for the Delta, IP
and ALL policies. With compression, the optimal chunksig@iKB for the Delta(gzip) policy

and 16 KB for the IP(gzip) and ALL(gzip) policies.

5.5 Results: CAS & Networking

In a VM-based client management system, the required staespurces, as discussed
in the previous section, represent a cost to the system astrator in terms of physical de-
vices, space, cooling, and management. However, certainopgrations, such as check-in and
checkout, require the transmission of data over the netwdihile the system administrator
must provision the networking infrastructure to handlesthéransmissions, perhaps the more
significant cost is the user time spent waiting for the trassions to complete.

For example, a common telecommuting scenario may be thatrangks at the office
for some time, checks-in their new VM state, travels home, atempts to checkout their VM
state to continue working. In the absence of CAS or trad#iamompression, downloading just

the 256 MB memory, which is required before work can resunaet a 1 Mbps DSL line requires
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more than 30 minutes of wait time. After working at home fomsotime, the user will also want
to checkin their new changes. Because the checkin imageiatly larger than the checkout
image, and because the upload speed of ADSL is often muclestyan the download speed,
the checkin operation can often require two hours or more.

Consequently, we devote this section to characterizingotmefits that CAS provides
in terms of reducing the volume of data to be transmitted rautiypical upload (checkin) or

download (checkout) operations.

5.5.1 Effect of Privacy Policy on Networking

As with storage, we begin the discussion by considering ffecteof privacy policy
on networking. We note that our definition of privacy polidyeats the representation of data
chunks in storage, not the mechanics of chunk transmisklowever, the chosen storage policy
can affect the capability of the system to identify reduniddeta blocks that need not be sent
because they already exist at the destination.

As an example, suppose that a user copies a file within theiralienvironment. This
operation may result in a virtual disk that contains dupgécehunks. Under the IP and ALL
policies, at the time of upload, the client will send a digafstnodified chunks to the server, and
the server may respond that the duplicate chunks need nenbéacause the chunks (identified
by the chunks’ tags) already exist on the server. Such reghtndiata can occur for a variety
of reasons (particularly under the ALL policy) includingetipush of software patches, user
download of popular Internet content, and the installadiod compilation of common software

packages.
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Fig. 5.10. Search space for identifying redundant blocksndudata synchronization opera-
tions. Note that for download, the system inspects the nezsint version available at the client
(which may be older thaiv — 1).

During download (checkout) operations, the client codé sgarch through the existing
version(s) of the user’s data on that client to identify dksithat need not be retrieved from the
server. As the system is only comparing the latest versiatheserver with the existing version
on the client, the volume of data to be transmitted does npermig on the privacy policy. In
contrast, the volume of data transmitted during uploaddkim® operations does depend on the
privacy policy employed because, at the server, redundanmiks are only identified within that
user’s version history under the IP policy, but can be iderttiacrossll users’ version histories
under the ALL policy. These differences based on storagieyate summarized in Figure 5.10
and affect our discussion in two ways: (1) this section (acbh.5.1), which investigates the
effects of privacy policy, only considers the upload operatand (2) Figures 5.12 and 5.13 in
Section 5.5.2 contain curves simply labeled CAS that reprethe identical download behaviors
of the IP and ALL policies.

CAS is essential.The upload volume for each of the storage policies with arttiquit
compression is presented in Figure 5.9. Because the upipados any user session includes

the 256MB memory image and any hard disk chunks modified duhiat session, the upload
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data volumes vary significantly due to user activity acrbes300+ checkin operations collected.
Consequently, we present the data as a cumulative distnibfutnction (CDF) plots. In the ideal
case, most upload sizes would be small; therefore, cunagstéind to occupy the upper left
corner are better. Note that the ALL policy strictly outperas the IP policy, which in turn,

strictly outperforms the Delta policy.

The median §0"" percentile) and percentile sizes from Figure 5.9 are presented
along with average upload sizes in Figure 5.11. Note thainthdian upload sizes tend to be
substantially better than the mean sizes, indicating tiatail of the distribution is somewhat
skewed in that the user will see a smaller than average upaas for 50% of the upload
attempts. Even so, we see from Figure 5.11(c) that the tadtiso unwieldy as to present sizes
more than a factor of 2 to 4 over the average upload size 95%edime.

Figure 5.11(a) shows that, for the 128 KB chunksize usederdtéployment, the use of
CAS reduces the average upload size from 880 MB (Delta palic40 MB (ALL policy). The
use of compression reduces the upload size to 293 MB for Raltial 32 MB for ALL. Further,
CAS policies provide the most significant benefits where treyneeded most, for large upload
sizes. From Figure 5.11(b) we see that CAS improves smabladbbperations by a modest 20
to 25 percent, while from Figure 5.11(c), we see that CAS owps the performance of large
uploads by a factor of 2to 5 without compression, and by afaaft1.5 to 3 with compression.
Thus, we observe that CAS significantly reduces the volundatd transmitted during upload
operations, and hence the wait time experienced at the eadigfr session.

CAS outperforms compression.Figure 5.11(a) indicates that the ALL poligyithout

compression outperforms the Delta poliejth compression for chunk sizes less than 64 KB (as

does the IP policy at a 4 KB chunk size). This shows that foramlication, inter-chunk CAS
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techniques may identify and eliminate more redundancy tteaitional intra-chunk compres-
sion techniques. The difference may be substantial, pdatly when the upload size is large.
As Figure 5.11(c) shows, the ALL polioyithout compression (chunksize=4 KB) outperforms
the Delta policywith compression (chunksize=512 KB) by a factor of 4.

IP identifies both temporal and spatial redundancy. For each of the components of
Figure 5.9, we see that the IP policy consistently outperfothe Delta policy. Both of these
policies restrict the search space for redundancy ideatifio to a single parcel. However, the
Delta policy only detects temporal redundancy between tineent and last versions of the par-
cel, while the IP policy detects temporal and spatial rednagt across all versions of the parcel.
The savings of IP over Delta indicate that users often craaidified chunks in their environment
that either existed at some point in the past, or in anothetion within the parcel.

ALL identifies inter-parcel savings.In all of Figure 5.9, the common observation be-
tween an IP and ALL comparison is that the ALL policy considiie outperforms the IP policy.
This observation is consistent with our intuition that fplead operations, the ALL policy must
perform at leastas well as the IP policy because the ALL policy identifies retAncy within
the set of blocks visible to the IP policy as well as blockstimeo parcels. In fact, Figure 5.11(a)
indicates that the ALL policy performs about twice as welttas IP policy for small chunk sizes
and approximately 25 percent better at larger chunk sizes.

This difference shows the benefit of having a larger pool afdadate chunks when
searching for redundant data. As mentioned, one sourceiofjtin can be the “broadcast”
of objects to many users (e.g. from software installatiaicipes, popular documents, big emalil
attachments, etc.). In systems leveraging the ALL polibgrefore, operations that might be

expected to impose a significant burden such as the distibof security patches may result
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in very little realized cost because the new data need onbtdred once and transmitted once

(across all users in the system).

5.5.2 Effect of Chunksize on Networking

The choice of chunksize will affect both the download sizd apload size to a server.
We continue our discussion of upload operations first, aad tiscuss the appropriate chunksize

for download operations.

5.5.2.1 Effect on Upload Size

Smaller chunksize is better for CAS.Figure 5.11(a) shows very clearly that smaller
chunksizes result in more efficient upload transmissiorCfas policies. In fact, under the ALL
policy, users with 4 KB chunk sizes will experience averag®ad sizes that are approximately
one-half the average size experienced by users with a 128KiBkcsize (whether compression
is employed or not).

Chunk sizes of 4 KB turned out to be optimal for all policiesemhconsidering the
average upload size. However, chunksize plays a very liitde for the non-CAS (Delta)
policy, and Figure 5.11(c) indicates that smaller chunksimay even be a liability for transfer

size outliers under the Delta policy with compression.

5.5.2.2 Effect on Download Size

Employing CAS techniques also potentially affects the r@dwof data transmitted during

download operations in two ways. First, CAS can identifyantersion redundancy and reduce
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the total volume of data transmission. Second, when a ugeests a download of their envi-
ronment to a particular client, CAS has the potential to eguny chunks selected for download
that are identical to chunks that happen to have been cachibaclient from previous sessions.

To simplify our discussion we assume that the client has exhett most one previous
version of the parcel in question, and if a cached versiorrésgnt, it is the version prior to
the one requested for download. This assumption corresptm@n expected common user
telecommuting behavior. Namely, the user creates veSienl of a parcel at home and uploads
it to the server. The user then retrieves versidn- 1 at work, creates versiofy, and uploads
that to the server. Our operation of interest is the users dewnload operation at home; upon
returning home, the user desires to download ver&icemd modify it. Fortunately, the user may
still have versionN — 1 cached locally, and thus, only the modified data that doesxist in
the cache need be retrieved. Note that this CAS technigubedikened to a sub-set of the IP
policy which inspects chunks of a single user, but only foingle previous version.

Our client management system, ISR, supports two basic nfode®wnload:demand-
fetchand complete-fetch Demand-fetch mode instantiates the user's environméet dbwn-
loading the minimum data needed to reconstruct the userisomment, essentially the physical
memory image corresponding to the user's VM (256 MB in out teployment). In particular,
the largest portion of the VM image, the virtual disk drive not retrieved before instantiating
the user’s environment. During operation, missing datakddchunks) must be fetched on de-
mand in a manner analogous to demand-paging in a virtual mesgstem. The complete-fetch
mode, in contrast, requires that the entire VM image inclgdhe virtual disk image (8.25 GB

in our test deployment) be present at the client before thg@mmment is instantiated.
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Caching improves demand-fetch. To evaluate the effect of client-side caching on
demand-fetch download volume, we calculated how much dataldweed to be transferred
from the server to a client under various conditions andectdld those results in Figure 5.12.
The curve labeled “No-cache” depicts the volume of datawwaild be transmitted if no data
from the previous version of the parcel were present in tlemttache. Under the “Delta” pol-
icy, the chunks in the memory image are compared with the sa@meks (those at the same
offset within the image) in the previous version of the meyriorage to determine whether they
match. The “CAS+Cachg” policy compares the keyring for the new memory image wité th
keyring for the previous memory image to determine whichnisuneed to be transferred. The
“CAS+Cachg, p" policy is similar except that it searches all the data cache the client
(memoryanddisk) to identify chunks that are already present on thentliEach basic curve in
Figure 5.12 also has a companion curve depicting the downlolumes observed when com-
pression is employed during the transfer.

As shown in Figure 5.12(a), introducing a differencing magbm (either Delta or CAS)
yields a reduction of approximately 20% (for the 128 KB chugikke) in the download size
relative to the size when no cached copy is present. Usingesgion alone, however, is very
effective— reducing the transfer size from 256 MB to appmadely 75 MB in the absence of
caching. Leveraging cached data in addition to compressaids a further 20% reduction.

Chunk size dramatically affects demand-fetch.Moving to a smaller chunk size can
have a significant effect on the volume of data transmittedhdua download operation, par-
ticularly if compression is not used, as shown in Figure 5.TBe average download size, in

particular, is reduced by a factor of two (for Delta) to fotor(“CAS+Cacheg, p") when the
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chunk size is reduced from 128 KB to 4 KB when comparing thécjgs either with or with-
out compression. Further, we see again that, with a 4 KB clsigts the CAS policiesvithout
compression outperform the no-cache poligth compression.

The difference between the “CAS+Caghe and “CAS+Cachg,, p” policies is also
most apparent with a 4 KB chunk size. At this size, in the abtsef compression, leveraging
the cached disk image in addition to the memory image redtleesverage transfer size to
56 MB from the 65 MB required when leveraging just the memonage. A similar gain is
observed when compression is employed; the transfer sizglisced from 23 MB (for “M”) to
18 MB (for “M+D")— a savings of more than 20%.

However, the added benefit of inspecting additional cacledd diminishes quickly as
the chunk size increases beyond 4 KB. We believe this phenomis due, at least in part, to the
fact that the 4 KB size corresponds to the size of both memage disk blocks in these VMs.
Consequently, potentially redundant data is most likelpeexposed when chunks are aligned
to 4 KB boundaries.

Caching significantly improves complete-fetchThe need for efficient download mech-
anisms is perhaps greatest in the complete-fetch mode dbe twlume of data in question. In
this mode, the user is requesting the download of the entiveiage, the most significant
component of which is the virtual disk drive image. In outt #eployment, the virtual disk drive
was a very modest 8 GB in size. One can readily imagine thas usgght desire virtual disk
drive spaces an order of magnitude larger. However, evamavinodest size (8 GB) and a fast
network (100 Mbps), a complete-fetch download will requitéeast 10 minutes. Consequently,
reducing the volume of data to be transferred by at least @era@f magnitude is essential to the

operation of these client management systems.
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The basic tools are the same as those mentioned for demthdrfiede. That is, a cache
of at least one previous version of the parcel is maintainethe client, if possible. Redun-
dancy between the cached version and the current versioheoserver is identified and only
non-redundant chunks are transferred during the downlBadher, the transferred chunks are
(optionally) compressed prior to transmission. One diffexe between our treatment of demand-
fetch and complete-fetch is that the CAS policy for compfeteh mode always compares the
entire current server version with the entire cached cliemsion. Consequently, Figure 5.13
includes a single “CAS” curve rather than the separate “Mi @&i+D” curves of Figure 5.12.

Figure 5.13(a) indicates that intelligent transfer medsras can, in fact, significantly
reduce the volume of data transmitted during a complethfeperation. Compression reduces
the average data volume from 8394 MB to 3310 MB, a factor of A €ontrast, the Delta policy
without compression yields a factor of 9.5 and a factor of 2®&i6h compression, assuming
a 128 KB chunk size. At the same chunk size, CAS provides ewane impressive savings:
factors of 12.6 and 29.5, without and with compression, eeiygely.

Small chunk sizes yield additional savingsWhile the slopes of the “CAS” and “CAS,gzip”
curves are not as dramatic as in previous figures, reducimgttbnk size from 128 KB to 4 KB
still yields significant savings. At this chunk size, the mge download size shrinks from the
nominal 8+ GB size by a factor of 31.4 without compression ardctor of 55 fifty-five) by
employing both CAS and compression.

CAS has a big impact where it's needed mostFigure 5.13(c) indicates that the 4 KB
“CAS,gzip” combination may be particularly effective foowinload operations that may oth-
erwise have resulted in large data transfers. The perfaam@ap between “CAS,gzip” and

“Delta,gzip” is particularly large in this graph. In factprfsmall chunk sizes “CASWithout
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compression significantly outperforms the Delta poleigh compression. Note in particular
that when employing the “CAS,gzip” policy with the 4 KB chuske, the of! percentile up-
load sizes are not significantly larger than the average #izes providing the user with better

expected bounds on the time required for a complete-fetemhbad.

5.6 Related Work

Our results are most directly applicable to VM-based clieahagement systems such as
the Sun Microsystem’s Sun Grid Compute Utility [76], the Aroa Elastic Compute Cloud [55],
3Tera’s grid computing infrastructure [1], the Collectij\&¥, 106], Soulpad [22], and ISR [63,
108], as well as systems that use VMs for Grid applicatiorgs 8, 66, 72, 121]. Further, our
results also provides guidelines for the storage desigmpliations that need to version VM
history. Examples include intrusion detection [38], op@ systems development [60], and
debugging system configurations [138]. Related applinatinclude storage cluster and web
services where VMs are being used for balancing load, isangaavailability, and simplifying
administration [86, 137].

The study could also help a large number of systems that us€AS to improve stor-
age and network utilization. Examples of CAS-based stogtems include EMC'’s Cen-
tera [39], Deep Store [141], the Venti [93], the Pastiche] [3ckup system, the TAPER [56]
scheme for replica synchronization and Farsite [12]. Oslystems use similar CAS-based tech-

nigues to eliminate duplicate data at various levels in thigvark stack. Systems such as the

www.manaraa.com



126
CASPER [130] and LBFS [80] file systems, Rhea et al.'s CASBthWWW [100], etc. ap-
ply these optimizations at the application layer. Otheusohs such as the DOT transfer ser-
vice [129] and Riverbed’s WAN accelerator [101] use techei such as Rabin Fingerprint-
ing [74, 96, 114] to detect data duplication at the transfget. However, most of these systems
have only concentrated on the mechanism behind using CA&tApm Bolosky et al. [14] and
Policroniades and Pratt [90], there have been few studaatkeasure data commonality in real

workloads.

5.7 Chapter Summary

Managing large volumes of data is one of the major challeidesent in developing and
maintaining enterprise client management systems base&dtoal machines. Using empirical
data collected during seven-months of a live-deploymemtnaf such system, we conclude that
leveraging content addressable storage (CAS) technolagysignificantly reduce the storage
and networking resources required by such a system (qusegf)d and Q2 from Section 3.1).

Our analysis indicates that CAS-based management potigisally benefit from di-
viding the data into very small chunk sizes despite the aatat meta-data overhead. In the
absence of compression, 4 KB chunks yielded the most effiag@nof both storage and network
resources. At this chunk size, a privacy-preserving CA&paan reduce the system storage re-
guirements by approximately 60% when compared to a bloseddifferencing policy@elta),
and a savings of approximately 80% is possible by relaximgapy.

Similarly, CAS policies that leverage data cached on clieathines reduce the average
guantity of data that must be transmitted during both uplaad download operations. For

upload, this technique again results in a savings (comptarddelta) of approximately 70%
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when preserving privacy and 80% when not. This technique r@duces the cost @omplete-
fetchdownload operations by more than 50% relative to the Deltaydrrespective of CAS
privacy policy) and by more than an order of magnitude redato the cost when caching is not
employed.

Leveraging compression in addition to CAS techniques jplesiadditional resource sav-
ings, and the combination yields the highest efficiency icates. However, a surprising find-
ing from this work is that CAS alone vyields higher efficienoy this data set than compression
alone, which is significant because the use of compressmmnsra non-zero run-time cost for
these systems.

This chapter provides an insight into the benefits of CAS,wagplied on real usage

data. We now present a few concluding remarks on this thesis.
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Chapter 6

Conclusions

In this thesis we have explored the design of a content aslabésfile system — CAPFS.
A key feature of CAPFS is incorporation of consistency/eaonency as part of the file system
design. Integral to this is the use of CAS, and the recipedesgresentation of a file, allowing
CAPFS to provide optimistic concurrency, thus boostingdilstem throughput. The use of CAS
based storage on data servers de-links data operationsnireter-data operations, and allows
them to proceed in parallel, thereby increasing bandwidtthér. We have also evaluated few
real world application benchmarks on CAPFS, to gain insighto how CAS would perform
on real-world data. The three most impotant insights were, CAS based cache performs
an outstanding job of saving network bandwidth; ii) CAS cawmesstorage space for most live
application workloads; iii) 1 KB is a good choice for churdesi We noted that the largest
bottleneck in a CAS based system is querying a CAS servehoptesence of a chunk in its
repository. We also find that SHAL1 hash generation overhaaglsiot significant, and are of
the order of 15%. We concluded from the Internet SuspendiResstudy, that in a real world
scenario, CAS can provide even more savings than in the ¢application benchmark data. An
important conclusion was that for such workloads, CAS piesibetter compression thgaip
We also noted remarkable storage space savings. Once Hgagavings in network bandwidth

makes a compelling case for the use of CAS based caches.
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